mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-06 14:14:46 +08:00
39ac57fa6d
start ---> head end ---> tail Much frustration with sed syntax. Need to learn perl some day.
202 lines
5.7 KiB
Plaintext
202 lines
5.7 KiB
Plaintext
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifndef EIGEN_ALIGNED_VECTOR3
|
|
#define EIGEN_ALIGNED_VECTOR3
|
|
|
|
#include <Eigen/Geometry>
|
|
|
|
namespace Eigen {
|
|
|
|
/** \ingroup Unsupported_modules
|
|
* \defgroup AlignedVector3_Module Aligned vector3 module
|
|
*
|
|
* \code
|
|
* #include <unsupported/Eigen/AlignedVector3>
|
|
* \endcode
|
|
*/
|
|
//@{
|
|
|
|
|
|
/** \class AlignedVector3
|
|
*
|
|
* \brief A vectorization friendly 3D vector
|
|
*
|
|
* This class represents a 3D vector internally using a 4D vector
|
|
* such that vectorization can be seamlessly enabled. Of course,
|
|
* the same result can be achieved by directly using a 4D vector.
|
|
* This class makes this process simpler.
|
|
*
|
|
*/
|
|
// TODO specialize Cwise
|
|
template<typename _Scalar> class AlignedVector3;
|
|
|
|
template<typename _Scalar> struct ei_traits<AlignedVector3<_Scalar> >
|
|
: ei_traits<Matrix<_Scalar,3,1,0,4,1> >
|
|
{
|
|
};
|
|
|
|
template<typename _Scalar> class AlignedVector3
|
|
: public MatrixBase<AlignedVector3<_Scalar> >
|
|
{
|
|
typedef Matrix<_Scalar,4,1> CoeffType;
|
|
CoeffType m_coeffs;
|
|
public:
|
|
|
|
EIGEN_GENERIC_PUBLIC_INTERFACE(AlignedVector3)
|
|
using Base::operator*;
|
|
|
|
inline int rows() const { return 3; }
|
|
inline int cols() const { return 1; }
|
|
|
|
inline const Scalar& coeff(int row, int col) const
|
|
{ return m_coeffs.coeff(row, col); }
|
|
|
|
inline Scalar& coeffRef(int row, int col)
|
|
{ return m_coeffs.coeffRef(row, col); }
|
|
|
|
inline const Scalar& coeff(int index) const
|
|
{ return m_coeffs.coeff(index); }
|
|
|
|
inline Scalar& coeffRef(int index)
|
|
{ return m_coeffs.coeffRef(index);}
|
|
|
|
|
|
inline AlignedVector3(const Scalar& x, const Scalar& y, const Scalar& z)
|
|
: m_coeffs(x, y, z, Scalar(0))
|
|
{}
|
|
|
|
inline AlignedVector3(const AlignedVector3& other)
|
|
: Base(), m_coeffs(other.m_coeffs)
|
|
{}
|
|
|
|
template<typename XprType, int Size=XprType::SizeAtCompileTime>
|
|
struct generic_assign_selector {};
|
|
|
|
template<typename XprType> struct generic_assign_selector<XprType,4>
|
|
{
|
|
inline static void run(AlignedVector3& dest, const XprType& src)
|
|
{
|
|
dest.m_coeffs = src;
|
|
}
|
|
};
|
|
|
|
template<typename XprType> struct generic_assign_selector<XprType,3>
|
|
{
|
|
inline static void run(AlignedVector3& dest, const XprType& src)
|
|
{
|
|
dest.m_coeffs.template head<3>() = src;
|
|
dest.m_coeffs.w() = Scalar(0);
|
|
}
|
|
};
|
|
|
|
template<typename Derived>
|
|
inline explicit AlignedVector3(const MatrixBase<Derived>& other)
|
|
{
|
|
generic_assign_selector<Derived>::run(*this,other.derived());
|
|
}
|
|
|
|
inline AlignedVector3& operator=(const AlignedVector3& other)
|
|
{ m_coeffs = other.m_coeffs; return *this; }
|
|
|
|
|
|
inline AlignedVector3 operator+(const AlignedVector3& other) const
|
|
{ return AlignedVector3(m_coeffs + other.m_coeffs); }
|
|
|
|
inline AlignedVector3& operator+=(const AlignedVector3& other)
|
|
{ m_coeffs += other.m_coeffs; return *this; }
|
|
|
|
inline AlignedVector3 operator-(const AlignedVector3& other) const
|
|
{ return AlignedVector3(m_coeffs - other.m_coeffs); }
|
|
|
|
inline AlignedVector3 operator-=(const AlignedVector3& other)
|
|
{ m_coeffs -= other.m_coeffs; return *this; }
|
|
|
|
inline AlignedVector3 operator*(const Scalar& s) const
|
|
{ return AlignedVector3(m_coeffs * s); }
|
|
|
|
inline friend AlignedVector3 operator*(const Scalar& s,const AlignedVector3& vec)
|
|
{ return AlignedVector3(s * vec.m_coeffs); }
|
|
|
|
inline AlignedVector3& operator*=(const Scalar& s)
|
|
{ m_coeffs *= s; return *this; }
|
|
|
|
inline AlignedVector3 operator/(const Scalar& s) const
|
|
{ return AlignedVector3(m_coeffs / s); }
|
|
|
|
inline AlignedVector3& operator/=(const Scalar& s)
|
|
{ m_coeffs /= s; return *this; }
|
|
|
|
inline Scalar dot(const AlignedVector3& other) const
|
|
{
|
|
ei_assert(m_coeffs.w()==Scalar(0));
|
|
ei_assert(other.m_coeffs.w()==Scalar(0));
|
|
return m_coeffs.dot(other.m_coeffs);
|
|
}
|
|
|
|
inline void normalize()
|
|
{
|
|
m_coeffs /= norm();
|
|
}
|
|
|
|
inline AlignedVector3 normalized()
|
|
{
|
|
return AlignedVector3(m_coeffs / norm());
|
|
}
|
|
|
|
inline Scalar sum() const
|
|
{
|
|
ei_assert(m_coeffs.w()==Scalar(0));
|
|
return m_coeffs.sum();
|
|
}
|
|
|
|
inline Scalar squaredNorm() const
|
|
{
|
|
ei_assert(m_coeffs.w()==Scalar(0));
|
|
return m_coeffs.squaredNorm();
|
|
}
|
|
|
|
inline Scalar norm() const
|
|
{
|
|
return ei_sqrt(squaredNorm());
|
|
}
|
|
|
|
inline AlignedVector3 cross(const AlignedVector3& other) const
|
|
{
|
|
return AlignedVector3(m_coeffs.cross3(other.m_coeffs));
|
|
}
|
|
|
|
template<typename Derived>
|
|
inline bool isApprox(const MatrixBase<Derived>& other, RealScalar eps=dummy_precision<Scalar>()) const
|
|
{
|
|
return m_coeffs.template head<3>().isApprox(other,eps);
|
|
}
|
|
};
|
|
|
|
//@}
|
|
|
|
}
|
|
|
|
#endif // EIGEN_ALIGNED_VECTOR3
|