mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-21 07:19:46 +08:00
120 lines
6.6 KiB
C++
120 lines
6.6 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2016
|
|
// Mehdi Goli Codeplay Software Ltd.
|
|
// Ralph Potter Codeplay Software Ltd.
|
|
// Luke Iwanski Codeplay Software Ltd.
|
|
// Contact: <eigen@codeplay.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#define EIGEN_TEST_NO_LONGDOUBLE
|
|
#define EIGEN_TEST_NO_COMPLEX
|
|
#define EIGEN_TEST_FUNC cxx11_tensor_builtins_sycl
|
|
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
|
|
#define EIGEN_USE_SYCL
|
|
|
|
#include "main.h"
|
|
#include <unsupported/Eigen/CXX11/Tensor>
|
|
|
|
using Eigen::array;
|
|
using Eigen::SyclDevice;
|
|
using Eigen::Tensor;
|
|
using Eigen::TensorMap;
|
|
|
|
namespace std {
|
|
template <typename T> T rsqrt(T x) { return 1 / std::sqrt(x); }
|
|
template <typename T> T square(T x) { return x * x; }
|
|
template <typename T> T cube(T x) { return x * x * x; }
|
|
template <typename T> T inverse(T x) { return 1 / x; }
|
|
}
|
|
|
|
#define TEST_UNARY_BUILTINS_FOR_SCALAR(FUNC, SCALAR, OPERATOR) \
|
|
{ \
|
|
/* out OPERATOR in.FUNC() */ \
|
|
Tensor<SCALAR, 3> in(tensorRange); \
|
|
Tensor<SCALAR, 3> out(tensorRange); \
|
|
in = in.random() + static_cast<SCALAR>(0.01); \
|
|
out = out.random() + static_cast<SCALAR>(0.01); \
|
|
Tensor<SCALAR, 3> reference(out); \
|
|
SCALAR *gpu_data = static_cast<SCALAR *>( \
|
|
sycl_device.allocate(in.size() * sizeof(SCALAR))); \
|
|
SCALAR *gpu_data_out = static_cast<SCALAR *>( \
|
|
sycl_device.allocate(out.size() * sizeof(SCALAR))); \
|
|
TensorMap<Tensor<SCALAR, 3>> gpu(gpu_data, tensorRange); \
|
|
TensorMap<Tensor<SCALAR, 3>> gpu_out(gpu_data_out, tensorRange); \
|
|
sycl_device.memcpyHostToDevice(gpu_data, in.data(), \
|
|
(in.size()) * sizeof(SCALAR)); \
|
|
sycl_device.memcpyHostToDevice(gpu_data_out, out.data(), \
|
|
(out.size()) * sizeof(SCALAR)); \
|
|
gpu_out.device(sycl_device) OPERATOR gpu.FUNC(); \
|
|
sycl_device.memcpyDeviceToHost(out.data(), gpu_data_out, \
|
|
(out.size()) * sizeof(SCALAR)); \
|
|
for (int i = 0; i < out.size(); ++i) { \
|
|
SCALAR ver = reference(i); \
|
|
ver OPERATOR std::FUNC(in(i)); \
|
|
VERIFY_IS_APPROX(out(i), ver); \
|
|
} \
|
|
sycl_device.deallocate(gpu_data); \
|
|
sycl_device.deallocate(gpu_data_out); \
|
|
} \
|
|
{ \
|
|
/* out OPERATOR out.FUNC() */ \
|
|
Tensor<SCALAR, 3> out(tensorRange); \
|
|
out = out.random() + static_cast<SCALAR>(0.01); \
|
|
Tensor<SCALAR, 3> reference(out); \
|
|
SCALAR *gpu_data_out = static_cast<SCALAR *>( \
|
|
sycl_device.allocate(out.size() * sizeof(SCALAR))); \
|
|
TensorMap<Tensor<SCALAR, 3>> gpu_out(gpu_data_out, tensorRange); \
|
|
sycl_device.memcpyHostToDevice(gpu_data_out, out.data(), \
|
|
(out.size()) * sizeof(SCALAR)); \
|
|
gpu_out.device(sycl_device) OPERATOR gpu_out.FUNC(); \
|
|
sycl_device.memcpyDeviceToHost(out.data(), gpu_data_out, \
|
|
(out.size()) * sizeof(SCALAR)); \
|
|
for (int i = 0; i < out.size(); ++i) { \
|
|
SCALAR ver = reference(i); \
|
|
ver OPERATOR std::FUNC(reference(i)); \
|
|
VERIFY_IS_APPROX(out(i), ver); \
|
|
} \
|
|
sycl_device.deallocate(gpu_data_out); \
|
|
}
|
|
|
|
#define TEST_UNARY_BUILTINS_OPERATOR(SCALAR, OPERATOR) \
|
|
TEST_UNARY_BUILTINS_FOR_SCALAR(abs, SCALAR, OPERATOR) \
|
|
TEST_UNARY_BUILTINS_FOR_SCALAR(sqrt, SCALAR, OPERATOR) \
|
|
TEST_UNARY_BUILTINS_FOR_SCALAR(rsqrt, SCALAR, OPERATOR) \
|
|
TEST_UNARY_BUILTINS_FOR_SCALAR(square, SCALAR, OPERATOR) \
|
|
TEST_UNARY_BUILTINS_FOR_SCALAR(cube, SCALAR, OPERATOR) \
|
|
TEST_UNARY_BUILTINS_FOR_SCALAR(inverse, SCALAR, OPERATOR) \
|
|
TEST_UNARY_BUILTINS_FOR_SCALAR(tanh, SCALAR, OPERATOR) \
|
|
TEST_UNARY_BUILTINS_FOR_SCALAR(exp, SCALAR, OPERATOR) \
|
|
TEST_UNARY_BUILTINS_FOR_SCALAR(log, SCALAR, OPERATOR) \
|
|
TEST_UNARY_BUILTINS_FOR_SCALAR(abs, SCALAR, OPERATOR) \
|
|
TEST_UNARY_BUILTINS_FOR_SCALAR(ceil, SCALAR, OPERATOR) \
|
|
TEST_UNARY_BUILTINS_FOR_SCALAR(floor, SCALAR, OPERATOR) \
|
|
TEST_UNARY_BUILTINS_FOR_SCALAR(round, SCALAR, OPERATOR) \
|
|
TEST_UNARY_BUILTINS_FOR_SCALAR(log1p, SCALAR, OPERATOR)
|
|
|
|
#define TEST_UNARY_BUILTINS(SCALAR) \
|
|
TEST_UNARY_BUILTINS_OPERATOR(SCALAR, += ) \
|
|
TEST_UNARY_BUILTINS_OPERATOR(SCALAR, = )
|
|
|
|
static void test_builtin_unary_sycl(const Eigen::SyclDevice &sycl_device) {
|
|
int sizeDim1 = 10;
|
|
int sizeDim2 = 10;
|
|
int sizeDim3 = 10;
|
|
array<int, 3> tensorRange = {{sizeDim1, sizeDim2, sizeDim3}};
|
|
|
|
TEST_UNARY_BUILTINS(float)
|
|
TEST_UNARY_BUILTINS(double)
|
|
}
|
|
|
|
void test_cxx11_tensor_builtins_sycl() {
|
|
cl::sycl::gpu_selector s;
|
|
Eigen::SyclDevice sycl_device(s);
|
|
CALL_SUBTEST(test_builtin_unary_sycl(sycl_device));
|
|
}
|