mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-27 07:29:52 +08:00
364 lines
9.8 KiB
C++
364 lines
9.8 KiB
C++
|
|
//g++ -O3 -g0 -DNDEBUG sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.005 -DSIZE=10000 && ./a.out
|
|
//g++ -O3 -g0 -DNDEBUG sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.05 -DSIZE=2000 && ./a.out
|
|
// -DNOGMM -DNOMTL -DCSPARSE
|
|
// -I /home/gael/Coding/LinearAlgebra/CSparse/Include/ /home/gael/Coding/LinearAlgebra/CSparse/Lib/libcsparse.a
|
|
|
|
#include <typeinfo>
|
|
|
|
#ifndef SIZE
|
|
#define SIZE 1000000
|
|
#endif
|
|
|
|
#ifndef NNZPERCOL
|
|
#define NNZPERCOL 6
|
|
#endif
|
|
|
|
#ifndef REPEAT
|
|
#define REPEAT 1
|
|
#endif
|
|
|
|
#include <algorithm>
|
|
#include "BenchTimer.h"
|
|
#include "BenchSparseUtil.h"
|
|
|
|
#ifndef NBTRIES
|
|
#define NBTRIES 1
|
|
#endif
|
|
|
|
#define BENCH(X) \
|
|
timer.reset(); \
|
|
for (int _j=0; _j<NBTRIES; ++_j) { \
|
|
timer.start(); \
|
|
for (int _k=0; _k<REPEAT; ++_k) { \
|
|
X \
|
|
} timer.stop(); }
|
|
|
|
// #ifdef MKL
|
|
//
|
|
// #include "mkl_types.h"
|
|
// #include "mkl_spblas.h"
|
|
//
|
|
// template<typename Lhs,typename Rhs,typename Res>
|
|
// void mkl_multiply(const Lhs& lhs, const Rhs& rhs, Res& res)
|
|
// {
|
|
// char n = 'N';
|
|
// float alpha = 1;
|
|
// char matdescra[6];
|
|
// matdescra[0] = 'G';
|
|
// matdescra[1] = 0;
|
|
// matdescra[2] = 0;
|
|
// matdescra[3] = 'C';
|
|
// mkl_scscmm(&n, lhs.rows(), rhs.cols(), lhs.cols(), &alpha, matdescra,
|
|
// lhs._valuePtr(), lhs._innerIndexPtr(), lhs.outerIndexPtr(),
|
|
// pntre, b, &ldb, &beta, c, &ldc);
|
|
// // mkl_somatcopy('C', 'T', lhs.rows(), lhs.cols(), 1,
|
|
// // lhs._valuePtr(), lhs.rows(), DST, dst_stride);
|
|
// }
|
|
//
|
|
// #endif
|
|
|
|
|
|
#ifdef CSPARSE
|
|
cs* cs_sorted_multiply(const cs* a, const cs* b)
|
|
{
|
|
// return cs_multiply(a,b);
|
|
|
|
cs* A = cs_transpose(a, 1);
|
|
cs* B = cs_transpose(b, 1);
|
|
cs* D = cs_multiply(B,A); /* D = B'*A' */
|
|
cs_spfree (A) ;
|
|
cs_spfree (B) ;
|
|
cs_dropzeros (D) ; /* drop zeros from D */
|
|
cs* C = cs_transpose (D, 1) ; /* C = D', so that C is sorted */
|
|
cs_spfree (D) ;
|
|
return C;
|
|
|
|
// cs* A = cs_transpose(a, 1);
|
|
// cs* C = cs_transpose(A, 1);
|
|
// return C;
|
|
}
|
|
|
|
cs* cs_sorted_multiply2(const cs* a, const cs* b)
|
|
{
|
|
cs* D = cs_multiply(a,b);
|
|
cs* E = cs_transpose(D,1);
|
|
cs_spfree(D);
|
|
cs* C = cs_transpose(E,1);
|
|
cs_spfree(E);
|
|
return C;
|
|
}
|
|
#endif
|
|
|
|
void bench_sort();
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
// bench_sort();
|
|
|
|
int rows = SIZE;
|
|
int cols = SIZE;
|
|
float density = DENSITY;
|
|
|
|
EigenSparseMatrix sm1(rows,cols), sm2(rows,cols), sm3(rows,cols), sm4(rows,cols);
|
|
|
|
BenchTimer timer;
|
|
for (int nnzPerCol = NNZPERCOL; nnzPerCol>1; nnzPerCol/=1.1)
|
|
{
|
|
sm1.setZero();
|
|
sm2.setZero();
|
|
fillMatrix2(nnzPerCol, rows, cols, sm1);
|
|
fillMatrix2(nnzPerCol, rows, cols, sm2);
|
|
// std::cerr << "filling OK\n";
|
|
|
|
// dense matrices
|
|
#ifdef DENSEMATRIX
|
|
{
|
|
std::cout << "Eigen Dense\t" << nnzPerCol << "%\n";
|
|
DenseMatrix m1(rows,cols), m2(rows,cols), m3(rows,cols);
|
|
eiToDense(sm1, m1);
|
|
eiToDense(sm2, m2);
|
|
|
|
timer.reset();
|
|
timer.start();
|
|
for (int k=0; k<REPEAT; ++k)
|
|
m3 = m1 * m2;
|
|
timer.stop();
|
|
std::cout << " a * b:\t" << timer.value() << endl;
|
|
|
|
timer.reset();
|
|
timer.start();
|
|
for (int k=0; k<REPEAT; ++k)
|
|
m3 = m1.transpose() * m2;
|
|
timer.stop();
|
|
std::cout << " a' * b:\t" << timer.value() << endl;
|
|
|
|
timer.reset();
|
|
timer.start();
|
|
for (int k=0; k<REPEAT; ++k)
|
|
m3 = m1.transpose() * m2.transpose();
|
|
timer.stop();
|
|
std::cout << " a' * b':\t" << timer.value() << endl;
|
|
|
|
timer.reset();
|
|
timer.start();
|
|
for (int k=0; k<REPEAT; ++k)
|
|
m3 = m1 * m2.transpose();
|
|
timer.stop();
|
|
std::cout << " a * b':\t" << timer.value() << endl;
|
|
}
|
|
#endif
|
|
|
|
// eigen sparse matrices
|
|
{
|
|
std::cout << "Eigen sparse\t" << sm1.nonZeros()/(float(sm1.rows())*float(sm1.cols()))*100 << "% * "
|
|
<< sm2.nonZeros()/(float(sm2.rows())*float(sm2.cols()))*100 << "%\n";
|
|
|
|
BENCH(sm3 = sm1 * sm2; )
|
|
std::cout << " a * b:\t" << timer.value() << endl;
|
|
|
|
// BENCH(sm3 = sm1.transpose() * sm2; )
|
|
// std::cout << " a' * b:\t" << timer.value() << endl;
|
|
// //
|
|
// BENCH(sm3 = sm1.transpose() * sm2.transpose(); )
|
|
// std::cout << " a' * b':\t" << timer.value() << endl;
|
|
// //
|
|
// BENCH(sm3 = sm1 * sm2.transpose(); )
|
|
// std::cout << " a * b' :\t" << timer.value() << endl;
|
|
|
|
|
|
// std::cout << "\n";
|
|
//
|
|
// BENCH( sm3._experimentalNewProduct(sm1, sm2); )
|
|
// std::cout << " a * b:\t" << timer.value() << endl;
|
|
//
|
|
// BENCH(sm3._experimentalNewProduct(sm1.transpose(),sm2); )
|
|
// std::cout << " a' * b:\t" << timer.value() << endl;
|
|
// //
|
|
// BENCH(sm3._experimentalNewProduct(sm1.transpose(),sm2.transpose()); )
|
|
// std::cout << " a' * b':\t" << timer.value() << endl;
|
|
// //
|
|
// BENCH(sm3._experimentalNewProduct(sm1, sm2.transpose());)
|
|
// std::cout << " a * b' :\t" << timer.value() << endl;
|
|
}
|
|
|
|
// eigen dyn-sparse matrices
|
|
/*{
|
|
DynamicSparseMatrix<Scalar> m1(sm1), m2(sm2), m3(sm3);
|
|
std::cout << "Eigen dyn-sparse\t" << m1.nonZeros()/(float(m1.rows())*float(m1.cols()))*100 << "% * "
|
|
<< m2.nonZeros()/(float(m2.rows())*float(m2.cols()))*100 << "%\n";
|
|
|
|
// timer.reset();
|
|
// timer.start();
|
|
BENCH(for (int k=0; k<REPEAT; ++k) m3 = m1 * m2;)
|
|
// timer.stop();
|
|
std::cout << " a * b:\t" << timer.value() << endl;
|
|
// std::cout << sm3 << "\n";
|
|
|
|
timer.reset();
|
|
timer.start();
|
|
// std::cerr << "transpose...\n";
|
|
// EigenSparseMatrix sm4 = sm1.transpose();
|
|
// std::cout << sm4.nonZeros() << " == " << sm1.nonZeros() << "\n";
|
|
// exit(1);
|
|
// std::cerr << "transpose OK\n";
|
|
// std::cout << sm1 << "\n\n" << sm1.transpose() << "\n\n" << sm4.transpose() << "\n\n";
|
|
BENCH(for (int k=0; k<REPEAT; ++k) m3 = m1.transpose() * m2;)
|
|
// timer.stop();
|
|
std::cout << " a' * b:\t" << timer.value() << endl;
|
|
|
|
// timer.reset();
|
|
// timer.start();
|
|
BENCH( for (int k=0; k<REPEAT; ++k) m3 = m1.transpose() * m2.transpose(); )
|
|
// timer.stop();
|
|
std::cout << " a' * b':\t" << timer.value() << endl;
|
|
|
|
// timer.reset();
|
|
// timer.start();
|
|
BENCH( for (int k=0; k<REPEAT; ++k) m3 = m1 * m2.transpose(); )
|
|
// timer.stop();
|
|
std::cout << " a * b' :\t" << timer.value() << endl;
|
|
}*/
|
|
|
|
// CSparse
|
|
#ifdef CSPARSE
|
|
{
|
|
std::cout << "CSparse \t" << nnzPerCol << "%\n";
|
|
cs *m1, *m2, *m3;
|
|
eiToCSparse(sm1, m1);
|
|
eiToCSparse(sm2, m2);
|
|
|
|
// timer.reset();
|
|
// timer.start();
|
|
// for (int k=0; k<REPEAT; ++k)
|
|
BENCH(
|
|
{
|
|
m3 = cs_sorted_multiply(m1, m2);
|
|
if (!m3)
|
|
{
|
|
std::cerr << "cs_multiply failed\n";
|
|
// break;
|
|
}
|
|
// cs_print(m3, 0);
|
|
cs_spfree(m3);
|
|
}
|
|
);
|
|
// timer.stop();
|
|
std::cout << " a * b:\t" << timer.value() << endl;
|
|
|
|
// BENCH( { m3 = cs_sorted_multiply2(m1, m2); cs_spfree(m3); } );
|
|
// std::cout << " a * b:\t" << timer.value() << endl;
|
|
}
|
|
#endif
|
|
|
|
#ifndef NOUBLAS
|
|
{
|
|
std::cout << "ublas\t" << nnzPerCol << "%\n";
|
|
UblasMatrix m1(rows,cols), m2(rows,cols), m3(rows,cols);
|
|
eiToUblas(sm1, m1);
|
|
eiToUblas(sm2, m2);
|
|
|
|
BENCH(boost::numeric::ublas::prod(m1, m2, m3););
|
|
// timer.reset();
|
|
// timer.start();
|
|
// for (int k=0; k<REPEAT; ++k)
|
|
// gmm::mult(m1, m2, gmmT3);
|
|
// timer.stop();
|
|
std::cout << " a * b:\t" << timer.value() << endl;
|
|
}
|
|
#endif
|
|
|
|
// GMM++
|
|
#ifndef NOGMM
|
|
{
|
|
std::cout << "GMM++ sparse\t" << nnzPerCol << "%\n";
|
|
GmmDynSparse gmmT3(rows,cols);
|
|
GmmSparse m1(rows,cols), m2(rows,cols), m3(rows,cols);
|
|
eiToGmm(sm1, m1);
|
|
eiToGmm(sm2, m2);
|
|
|
|
timer.reset();
|
|
timer.start();
|
|
for (int k=0; k<REPEAT; ++k)
|
|
gmm::mult(m1, m2, gmmT3);
|
|
timer.stop();
|
|
std::cout << " a * b:\t" << timer.value() << endl;
|
|
|
|
// timer.reset();
|
|
// timer.start();
|
|
// for (int k=0; k<REPEAT; ++k)
|
|
// gmm::mult(gmm::transposed(m1), m2, gmmT3);
|
|
// timer.stop();
|
|
// std::cout << " a' * b:\t" << timer.value() << endl;
|
|
//
|
|
// if (rows<500)
|
|
// {
|
|
// timer.reset();
|
|
// timer.start();
|
|
// for (int k=0; k<REPEAT; ++k)
|
|
// gmm::mult(gmm::transposed(m1), gmm::transposed(m2), gmmT3);
|
|
// timer.stop();
|
|
// std::cout << " a' * b':\t" << timer.value() << endl;
|
|
//
|
|
// timer.reset();
|
|
// timer.start();
|
|
// for (int k=0; k<REPEAT; ++k)
|
|
// gmm::mult(m1, gmm::transposed(m2), gmmT3);
|
|
// timer.stop();
|
|
// std::cout << " a * b':\t" << timer.value() << endl;
|
|
// }
|
|
// else
|
|
// {
|
|
// std::cout << " a' * b':\t" << "forever" << endl;
|
|
// std::cout << " a * b':\t" << "forever" << endl;
|
|
// }
|
|
}
|
|
#endif
|
|
|
|
// MTL4
|
|
#ifndef NOMTL
|
|
{
|
|
std::cout << "MTL4\t" << nnzPerCol << "%\n";
|
|
MtlSparse m1(rows,cols), m2(rows,cols), m3(rows,cols);
|
|
eiToMtl(sm1, m1);
|
|
eiToMtl(sm2, m2);
|
|
|
|
timer.reset();
|
|
timer.start();
|
|
for (int k=0; k<REPEAT; ++k)
|
|
m3 = m1 * m2;
|
|
timer.stop();
|
|
std::cout << " a * b:\t" << timer.value() << endl;
|
|
|
|
// timer.reset();
|
|
// timer.start();
|
|
// for (int k=0; k<REPEAT; ++k)
|
|
// m3 = trans(m1) * m2;
|
|
// timer.stop();
|
|
// std::cout << " a' * b:\t" << timer.value() << endl;
|
|
//
|
|
// timer.reset();
|
|
// timer.start();
|
|
// for (int k=0; k<REPEAT; ++k)
|
|
// m3 = trans(m1) * trans(m2);
|
|
// timer.stop();
|
|
// std::cout << " a' * b':\t" << timer.value() << endl;
|
|
//
|
|
// timer.reset();
|
|
// timer.start();
|
|
// for (int k=0; k<REPEAT; ++k)
|
|
// m3 = m1 * trans(m2);
|
|
// timer.stop();
|
|
// std::cout << " a * b' :\t" << timer.value() << endl;
|
|
}
|
|
#endif
|
|
|
|
std::cout << "\n\n";
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
|