mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-21 07:19:46 +08:00
78 lines
2.8 KiB
C++
78 lines
2.8 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2011 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "main.h"
|
|
#include <unsupported/Eigen/MatrixFunctions>
|
|
|
|
template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
|
|
struct generateTestMatrix;
|
|
|
|
// for real matrices, make sure none of the eigenvalues are negative
|
|
template <typename MatrixType>
|
|
struct generateTestMatrix<MatrixType,0>
|
|
{
|
|
static void run(MatrixType& result, typename MatrixType::Index size)
|
|
{
|
|
MatrixType mat = MatrixType::Random(size, size);
|
|
EigenSolver<MatrixType> es(mat);
|
|
typename EigenSolver<MatrixType>::EigenvalueType eivals = es.eigenvalues();
|
|
for (typename MatrixType::Index i = 0; i < size; ++i) {
|
|
if (eivals(i).imag() == 0 && eivals(i).real() < 0)
|
|
eivals(i) = -eivals(i);
|
|
}
|
|
result = (es.eigenvectors() * eivals.asDiagonal() * es.eigenvectors().inverse()).real();
|
|
}
|
|
};
|
|
|
|
// for complex matrices, any matrix is fine
|
|
template <typename MatrixType>
|
|
struct generateTestMatrix<MatrixType,1>
|
|
{
|
|
static void run(MatrixType& result, typename MatrixType::Index size)
|
|
{
|
|
result = MatrixType::Random(size, size);
|
|
}
|
|
};
|
|
|
|
template<typename MatrixType>
|
|
void testMatrixSqrt(const MatrixType& m)
|
|
{
|
|
MatrixType A;
|
|
generateTestMatrix<MatrixType>::run(A, m.rows());
|
|
MatrixType sqrtA = A.sqrt();
|
|
VERIFY_IS_APPROX(sqrtA * sqrtA, A);
|
|
}
|
|
|
|
void test_matrix_square_root()
|
|
{
|
|
for (int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1(testMatrixSqrt(Matrix3cf()));
|
|
CALL_SUBTEST_2(testMatrixSqrt(MatrixXcd(12,12)));
|
|
CALL_SUBTEST_3(testMatrixSqrt(Matrix4f()));
|
|
CALL_SUBTEST_4(testMatrixSqrt(Matrix<double,Dynamic,Dynamic,RowMajor>(9, 9)));
|
|
CALL_SUBTEST_5(testMatrixSqrt(Matrix<float,1,1>()));
|
|
CALL_SUBTEST_5(testMatrixSqrt(Matrix<std::complex<float>,1,1>()));
|
|
}
|
|
}
|