mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-06 14:14:46 +08:00
5f43a42ee7
* try to be clever in matrix ctors and operator=: be lazy when we can, always allow to copy rowvector into columnvector, check the template parameters, try to factor the code better * add missing copy ctor in UnalignedType * fix bug in the traits of DiagonalProduct * renaming: EIGEN_TUNE_FOR_CPU_CACHE_SIZE * update the dox a little
149 lines
6.5 KiB
Plaintext
149 lines
6.5 KiB
Plaintext
namespace Eigen {
|
|
|
|
/** \page CustomizingEigen Customizing/Extending Eigen
|
|
|
|
Eigen2 can be extended in several ways, for instance, by defining global methods, \ref ExtendingMatrixBase "by adding custom methods to MatrixBase", adding support to \ref CustomScalarType "custom types" etc.
|
|
|
|
\b Table \b of \b contents
|
|
- \ref ExtendingMatrixBase
|
|
- \ref CustomScalarType
|
|
- \ref PreprocessorDirectives
|
|
|
|
\section ExtendingMatrixBase Extending MatrixBase
|
|
|
|
In this section we will see how to add custom methods to MatrixBase. Since all expressions and matrix types inherit MatrixBase, adding a method to MatrixBase make it immediately available to all expressions ! A typical use case is, for instance, to make Eigen compatible with another API.
|
|
|
|
You certainly know that in C++ it is not possible to add methods to an extending class. So how that's possible ? Here the trick is to include in the declaration of MatrixBase a file defined by the preprocessor token \c EIGEN_MATRIXBASE_PLUGIN:
|
|
\code
|
|
class MatrixBase {
|
|
// ...
|
|
#ifdef EIGEN_MATRIXBASE_PLUGIN
|
|
#include EIGEN_MATRIXBASE_PLUGIN
|
|
#endif
|
|
};
|
|
\endcode
|
|
Therefore to extend MatrixBase with you own methods you just have to create a file with your method declaration and define EIGEN_MATRIXBASE_PLUGIN before you include any Eigen's header file.
|
|
|
|
Here is an example of such an extension file: \n
|
|
\b MatrixBaseAddons.h
|
|
\code
|
|
inline Scalar at(uint i, uint j) const { return this->operator()(i,j); }
|
|
inline Scalar& at(uint i, uint j) { return this->operator()(i,j); }
|
|
inline Scalar at(uint i) const { return this->operator[](i); }
|
|
inline Scalar& at(uint i) { return this->operator[](i); }
|
|
|
|
inline RealScalar squaredLength() const { return squaredNorm(); }
|
|
inline RealScalar length() const { return norm(); }
|
|
inline RealScalar invLength(void) const { return fast_inv_sqrt(squaredNorm()); }
|
|
|
|
template<typename OtherDerived>
|
|
inline Scalar squaredDistanceTo(const MatrixBase<OtherDerived>& other) const
|
|
{ return (derived() - other.derived()).squaredNorm(); }
|
|
|
|
template<typename OtherDerived>
|
|
inline RealScalar distanceTo(const MatrixBase<OtherDerived>& other) const
|
|
{ return ei_sqrt(derived().squaredDistanceTo(other)); }
|
|
|
|
inline void scaleTo(RealScalar l) { RealScalar vl = norm(); if (vl>1e-9) derived() *= (l/vl); }
|
|
|
|
inline Transpose<Derived> transposed() {return transpose();}
|
|
inline const Transpose<Derived> transposed() const {return transpose();}
|
|
|
|
inline uint minComponentId(void) const { int i; minCoeff(&i); return i; }
|
|
inline uint maxComponentId(void) const { int i; maxCoeff(&i); return i; }
|
|
|
|
template<typename OtherDerived>
|
|
void makeFloor(const MatrixBase<OtherDerived>& other) { derived() = derived().cwise().min(other.derived()); }
|
|
template<typename OtherDerived>
|
|
void makeCeil(const MatrixBase<OtherDerived>& other) { derived() = derived().cwise().max(other.derived()); }
|
|
|
|
const typename Cwise<Derived>::ScalarAddReturnType
|
|
operator+(const Scalar& scalar) const { return cwise() + scalar }
|
|
|
|
friend const typename Cwise<Derived>::ScalarAddReturnType
|
|
operator+(const Scalar& scalar, const MatrixBase<Derived>& mat) { return mat + scalar; }
|
|
\endcode
|
|
|
|
Then one can the following declaration in the config.h or whatever prerequisites header file of his project:
|
|
\code
|
|
#define EIGEN_MATRIXBASE_PLUGIN "MatrixBaseAddons.h"
|
|
\endcode
|
|
|
|
|
|
|
|
\section CustomScalarType Using custom scalar types
|
|
|
|
By default, Eigen currently supports the following scalar types: \c int, \c float, \c double, \c std::complex<float>, \c std::complex<double>, \c long \c double, \c long \c long \c int (64 bits integers), and \c bool. The \c long \c double is especially useful on x86-64 systems or when the SSE2 instruction set is enabled because it enforces the use of x87 registers with extended accuracy.
|
|
|
|
In order to add support for a custom type \c T you need:
|
|
1 - make sure the common operator (+,-,*,/,etc.) are supported by the type \c T
|
|
2 - add a specialization of struct Eigen::NumTraits<T> (see \ref NumTraits)
|
|
3 - define a couple of math functions for your type such as: ei_sqrt, ei_abs, etc...
|
|
(see the file Eigen/src/Core/MathFunctions.h)
|
|
|
|
Here is a concrete example adding support for the Adolc's \c adouble type. <a href="http://www.math.tu-dresden.de/~adol-c/">Adolc</a> is an automatic differentiation library. The type \c adouble is basically a real value tracking the values of any number of partial derivatives.
|
|
|
|
\code
|
|
#ifndef ADLOCSUPPORT_H
|
|
#define ADLOCSUPPORT_H
|
|
|
|
#define ADOLC_TAPELESS
|
|
#include <adolc/adouble.h>
|
|
#include <Eigen/Core>
|
|
|
|
namespace Eigen {
|
|
|
|
template<> struct NumTraits<adtl::adouble>
|
|
{
|
|
typedef adtl::adouble Real;
|
|
typedef adtl::adouble FloatingPoint;
|
|
enum {
|
|
IsComplex = 0,
|
|
HasFloatingPoint = 1,
|
|
ReadCost = 1,
|
|
AddCost = 1,
|
|
MulCost = 1
|
|
};
|
|
};
|
|
|
|
}
|
|
|
|
// the Adolc's type adouble is defined in the adtl namespace
|
|
// therefore, the following ei_* functions *must* be defined
|
|
// in the same namespace
|
|
namespace adtl {
|
|
|
|
inline const adouble& ei_conj(const adouble& x) { return x; }
|
|
inline const adouble& ei_real(const adouble& x) { return x; }
|
|
inline adouble ei_imag(const adouble&) { return 0.; }
|
|
inline adouble ei_abs(const adouble& x) { return fabs(x); }
|
|
inline adouble ei_abs2(const adouble& x) { return x*x; }
|
|
inline adouble ei_sqrt(const adouble& x) { return sqrt(x); }
|
|
inline adouble ei_exp(const adouble& x) { return exp(x); }
|
|
inline adouble ei_log(const adouble& x) { return log(x); }
|
|
inline adouble ei_sin(const adouble& x) { return sin(x); }
|
|
inline adouble ei_cos(const adouble& x) { return cos(x); }
|
|
inline adouble ei_pow(const adouble& x, adouble y) { return pow(x, y); }
|
|
|
|
}
|
|
|
|
#endif // ADLOCSUPPORT_H
|
|
\endcode
|
|
|
|
|
|
|
|
\section PreprocessorDirectives Preprocessor directives
|
|
|
|
You can control some aspects of Eigen by defining the following preprocessor tokens them before including any of Eigen's headers.
|
|
- \b EIGEN_NO_DEBUG disables Eigen assertions. Like NDEBUG but only affects Eigen's assertions.
|
|
- \b EIGEN_DONT_VECTORIZE disables explicit vectorization when defined.
|
|
- \b EIGEN_UNROLLING_LIMIT defines the maximal instruction counts to enable meta unrolling of loops. Set it to zero to disable unrolling. The default is 100.
|
|
- \b EIGEN_DEFAULT_TO_ROW_MAJOR the default storage order for matrices becomes row-major instead of column-major.
|
|
- \b EIGEN_TUNE_FOR_CPU_CACHE_SIZE represents the maximal size in Bytes of L2 blocks. Since several blocks have to stay concurently in L2 cache, this value should correspond to at most 1/4 of the size of L2 cache.
|
|
- \b EIGEN_NO_STATIC_ASSERT replaces compile time static assertions by runtime assertions
|
|
- \b EIGEN_MATRIXBASE_PLUGIN see \ref ExtendingMatrixBase
|
|
|
|
*/
|
|
|
|
}
|