mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-18 14:34:17 +08:00
159 lines
6.3 KiB
C++
159 lines
6.3 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE.f See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "main.h"
|
|
#include <Eigen/QR>
|
|
|
|
template<typename Derived1, typename Derived2>
|
|
bool areNotApprox(const MatrixBase<Derived1>& m1, const MatrixBase<Derived2>& m2, typename Derived1::RealScalar epsilon = NumTraits<typename Derived1::RealScalar>::dummy_precision())
|
|
{
|
|
return !((m1-m2).cwiseAbs2().maxCoeff() < epsilon * epsilon
|
|
* std::max(m1.cwiseAbs2().maxCoeff(), m2.cwiseAbs2().maxCoeff()));
|
|
}
|
|
|
|
template<typename MatrixType> void product(const MatrixType& m)
|
|
{
|
|
/* this test covers the following files:
|
|
Identity.h Product.h
|
|
*/
|
|
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename NumTraits<Scalar>::NonInteger NonInteger;
|
|
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> RowVectorType;
|
|
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> ColVectorType;
|
|
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> RowSquareMatrixType;
|
|
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> ColSquareMatrixType;
|
|
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime,
|
|
MatrixType::Flags&RowMajorBit> OtherMajorMatrixType;
|
|
|
|
int rows = m.rows();
|
|
int cols = m.cols();
|
|
|
|
// this test relies a lot on Random.h, and there's not much more that we can do
|
|
// to test it, hence I consider that we will have tested Random.h
|
|
MatrixType m1 = MatrixType::Random(rows, cols),
|
|
m2 = MatrixType::Random(rows, cols),
|
|
m3(rows, cols),
|
|
mzero = MatrixType::Zero(rows, cols);
|
|
RowSquareMatrixType
|
|
identity = RowSquareMatrixType::Identity(rows, rows),
|
|
square = RowSquareMatrixType::Random(rows, rows),
|
|
res = RowSquareMatrixType::Random(rows, rows);
|
|
ColSquareMatrixType
|
|
square2 = ColSquareMatrixType::Random(cols, cols),
|
|
res2 = ColSquareMatrixType::Random(cols, cols);
|
|
RowVectorType v1 = RowVectorType::Random(rows),
|
|
v2 = RowVectorType::Random(rows),
|
|
vzero = RowVectorType::Zero(rows);
|
|
ColVectorType vc2 = ColVectorType::Random(cols), vcres(cols);
|
|
OtherMajorMatrixType tm1 = m1;
|
|
|
|
Scalar s1 = ei_random<Scalar>();
|
|
|
|
int r = ei_random<int>(0, rows-1),
|
|
c = ei_random<int>(0, cols-1),
|
|
c2 = ei_random<int>(0, cols-1);
|
|
|
|
// begin testing Product.h: only associativity for now
|
|
// (we use Transpose.h but this doesn't count as a test for it)
|
|
VERIFY_IS_APPROX((m1*m1.transpose())*m2, m1*(m1.transpose()*m2));
|
|
m3 = m1;
|
|
m3 *= m1.transpose() * m2;
|
|
VERIFY_IS_APPROX(m3, m1 * (m1.transpose()*m2));
|
|
VERIFY_IS_APPROX(m3, m1 * (m1.transpose()*m2));
|
|
|
|
// continue testing Product.h: distributivity
|
|
VERIFY_IS_APPROX(square*(m1 + m2), square*m1+square*m2);
|
|
VERIFY_IS_APPROX(square*(m1 - m2), square*m1-square*m2);
|
|
|
|
// continue testing Product.h: compatibility with ScalarMultiple.h
|
|
VERIFY_IS_APPROX(s1*(square*m1), (s1*square)*m1);
|
|
VERIFY_IS_APPROX(s1*(square*m1), square*(m1*s1));
|
|
|
|
// test Product.h together with Identity.h
|
|
VERIFY_IS_APPROX(v1, identity*v1);
|
|
VERIFY_IS_APPROX(v1.transpose(), v1.transpose() * identity);
|
|
// again, test operator() to check const-qualification
|
|
VERIFY_IS_APPROX(MatrixType::Identity(rows, cols)(r,c), static_cast<Scalar>(r==c));
|
|
|
|
if (rows!=cols)
|
|
VERIFY_RAISES_ASSERT(m3 = m1*m1);
|
|
|
|
// test the previous tests were not screwed up because operator* returns 0
|
|
// (we use the more accurate default epsilon)
|
|
if (!NumTraits<Scalar>::IsInteger && std::min(rows,cols)>1)
|
|
{
|
|
VERIFY(areNotApprox(m1.transpose()*m2,m2.transpose()*m1));
|
|
}
|
|
|
|
// test optimized operator+= path
|
|
res = square;
|
|
res.noalias() += m1 * m2.transpose();
|
|
VERIFY_IS_APPROX(res, square + m1 * m2.transpose());
|
|
if (!NumTraits<Scalar>::IsInteger && std::min(rows,cols)>1)
|
|
{
|
|
VERIFY(areNotApprox(res,square + m2 * m1.transpose()));
|
|
}
|
|
vcres = vc2;
|
|
vcres.noalias() += m1.transpose() * v1;
|
|
VERIFY_IS_APPROX(vcres, vc2 + m1.transpose() * v1);
|
|
|
|
// test optimized operator-= path
|
|
res = square;
|
|
res.noalias() -= m1 * m2.transpose();
|
|
VERIFY_IS_APPROX(res, square - (m1 * m2.transpose()));
|
|
if (!NumTraits<Scalar>::IsInteger && std::min(rows,cols)>1)
|
|
{
|
|
VERIFY(areNotApprox(res,square - m2 * m1.transpose()));
|
|
}
|
|
vcres = vc2;
|
|
vcres.noalias() -= m1.transpose() * v1;
|
|
VERIFY_IS_APPROX(vcres, vc2 - m1.transpose() * v1);
|
|
|
|
tm1 = m1;
|
|
VERIFY_IS_APPROX(tm1.transpose() * v1, m1.transpose() * v1);
|
|
VERIFY_IS_APPROX(v1.transpose() * tm1, v1.transpose() * m1);
|
|
|
|
// test submatrix and matrix/vector product
|
|
for (int i=0; i<rows; ++i)
|
|
res.row(i) = m1.row(i) * m2.transpose();
|
|
VERIFY_IS_APPROX(res, m1 * m2.transpose());
|
|
// the other way round:
|
|
for (int i=0; i<rows; ++i)
|
|
res.col(i) = m1 * m2.transpose().col(i);
|
|
VERIFY_IS_APPROX(res, m1 * m2.transpose());
|
|
|
|
res2 = square2;
|
|
res2.noalias() += m1.transpose() * m2;
|
|
VERIFY_IS_APPROX(res2, square2 + m1.transpose() * m2);
|
|
if (!NumTraits<Scalar>::IsInteger && std::min(rows,cols)>1)
|
|
{
|
|
VERIFY(areNotApprox(res2,square2 + m2.transpose() * m1));
|
|
}
|
|
|
|
// inner product
|
|
Scalar x = square2.row(c) * square2.col(c2);
|
|
VERIFY_IS_APPROX(x, square2.row(c).transpose().cwiseProduct(square2.col(c2)).sum());
|
|
}
|