mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-06 14:14:46 +08:00
68 lines
2.5 KiB
C++
68 lines
2.5 KiB
C++
// This file is triangularView of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "main.h"
|
|
|
|
// This file tests the basic selfadjointView API,
|
|
// the related products and decompositions are tested in specific files.
|
|
|
|
template<typename MatrixType> void selfadjoint(const MatrixType& m)
|
|
{
|
|
typedef typename MatrixType::Index Index;
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
|
|
Index rows = m.rows();
|
|
Index cols = m.cols();
|
|
|
|
MatrixType m1 = MatrixType::Random(rows, cols),
|
|
m3(rows, cols);
|
|
|
|
m1.diagonal() = m1.diagonal().real().template cast<Scalar>();
|
|
|
|
// check selfadjoint to dense
|
|
m3 = m1.template selfadjointView<Upper>();
|
|
VERIFY_IS_APPROX(MatrixType(m3.template triangularView<Upper>()), MatrixType(m1.template triangularView<Upper>()));
|
|
VERIFY_IS_APPROX(m3, m3.adjoint());
|
|
|
|
|
|
m3 = m1.template selfadjointView<Lower>();
|
|
VERIFY_IS_APPROX(MatrixType(m3.template triangularView<Lower>()), MatrixType(m1.template triangularView<Lower>()));
|
|
VERIFY_IS_APPROX(m3, m3.adjoint());
|
|
}
|
|
|
|
void test_selfadjoint()
|
|
{
|
|
for(int i = 0; i < g_repeat ; i++)
|
|
{
|
|
int s = ei_random<int>(1,20); EIGEN_UNUSED_VARIABLE(s);
|
|
|
|
CALL_SUBTEST_1( selfadjoint(Matrix<float, 1, 1>()) );
|
|
CALL_SUBTEST_2( selfadjoint(Matrix<float, 2, 2>()) );
|
|
CALL_SUBTEST_3( selfadjoint(Matrix3cf()) );
|
|
CALL_SUBTEST_4( selfadjoint(MatrixXcd(s,s)) );
|
|
CALL_SUBTEST_5( selfadjoint(Matrix<float,Dynamic,Dynamic,RowMajor>(s, s)) );
|
|
}
|
|
}
|