eigen/test/gpu_basic.cu
Deven Desai 876f392c39 Updates corresponding to the latest round of PR feedback
The major changes are

1. Moving CUDA/PacketMath.h to GPU/PacketMath.h
2. Moving CUDA/MathFunctions.h to GPU/MathFunction.h
3. Moving CUDA/CudaSpecialFunctions.h to GPU/GpuSpecialFunctions.h
    The above three changes effectively enable the Eigen "Packet" layer for the HIP platform

4. Merging the "hip_basic" and "cuda_basic" unit tests into one ("gpu_basic")
5. Updating the "EIGEN_DEVICE_FUNC" marking in some places

The change has been tested on the HIP and CUDA platforms.
2018-07-11 10:39:54 -04:00

213 lines
6.8 KiB
Plaintext

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2015-2016 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
// workaround issue between gcc >= 4.7 and cuda 5.5
#if (defined __GNUC__) && (__GNUC__>4 || __GNUC_MINOR__>=7)
#undef _GLIBCXX_ATOMIC_BUILTINS
#undef _GLIBCXX_USE_INT128
#endif
#define EIGEN_TEST_NO_LONGDOUBLE
#define EIGEN_TEST_NO_COMPLEX
#define EIGEN_TEST_FUNC gpu_basic
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
#include "main.h"
#include "gpu_common.h"
// Check that dense modules can be properly parsed by nvcc
#include <Eigen/Dense>
// struct Foo{
// EIGEN_DEVICE_FUNC
// void operator()(int i, const float* mats, float* vecs) const {
// using namespace Eigen;
// // Matrix3f M(data);
// // Vector3f x(data+9);
// // Map<Vector3f>(data+9) = M.inverse() * x;
// Matrix3f M(mats+i/16);
// Vector3f x(vecs+i*3);
// // using std::min;
// // using std::sqrt;
// Map<Vector3f>(vecs+i*3) << x.minCoeff(), 1, 2;// / x.dot(x);//(M.inverse() * x) / x.x();
// //x = x*2 + x.y() * x + x * x.maxCoeff() - x / x.sum();
// }
// };
template<typename T>
struct coeff_wise {
EIGEN_DEVICE_FUNC
void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
{
using namespace Eigen;
T x1(in+i);
T x2(in+i+1);
T x3(in+i+2);
Map<T> res(out+i*T::MaxSizeAtCompileTime);
res.array() += (in[0] * x1 + x2).array() * x3.array();
}
};
template<typename T>
struct replicate {
EIGEN_DEVICE_FUNC
void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
{
using namespace Eigen;
T x1(in+i);
int step = x1.size() * 4;
int stride = 3 * step;
typedef Map<Array<typename T::Scalar,Dynamic,Dynamic> > MapType;
MapType(out+i*stride+0*step, x1.rows()*2, x1.cols()*2) = x1.replicate(2,2);
MapType(out+i*stride+1*step, x1.rows()*3, x1.cols()) = in[i] * x1.colwise().replicate(3);
MapType(out+i*stride+2*step, x1.rows(), x1.cols()*3) = in[i] * x1.rowwise().replicate(3);
}
};
template<typename T>
struct redux {
EIGEN_DEVICE_FUNC
void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
{
using namespace Eigen;
int N = 10;
T x1(in+i);
out[i*N+0] = x1.minCoeff();
out[i*N+1] = x1.maxCoeff();
out[i*N+2] = x1.sum();
out[i*N+3] = x1.prod();
out[i*N+4] = x1.matrix().squaredNorm();
out[i*N+5] = x1.matrix().norm();
out[i*N+6] = x1.colwise().sum().maxCoeff();
out[i*N+7] = x1.rowwise().maxCoeff().sum();
out[i*N+8] = x1.matrix().colwise().squaredNorm().sum();
}
};
template<typename T1, typename T2>
struct prod_test {
EIGEN_DEVICE_FUNC
void operator()(int i, const typename T1::Scalar* in, typename T1::Scalar* out) const
{
using namespace Eigen;
typedef Matrix<typename T1::Scalar, T1::RowsAtCompileTime, T2::ColsAtCompileTime> T3;
T1 x1(in+i);
T2 x2(in+i+1);
Map<T3> res(out+i*T3::MaxSizeAtCompileTime);
res += in[i] * x1 * x2;
}
};
template<typename T1, typename T2>
struct diagonal {
EIGEN_DEVICE_FUNC
void operator()(int i, const typename T1::Scalar* in, typename T1::Scalar* out) const
{
using namespace Eigen;
T1 x1(in+i);
Map<T2> res(out+i*T2::MaxSizeAtCompileTime);
res += x1.diagonal();
}
};
template<typename T>
struct eigenvalues_direct {
EIGEN_DEVICE_FUNC
void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
{
using namespace Eigen;
typedef Matrix<typename T::Scalar, T::RowsAtCompileTime, 1> Vec;
T M(in+i);
Map<Vec> res(out+i*Vec::MaxSizeAtCompileTime);
T A = M*M.adjoint();
SelfAdjointEigenSolver<T> eig;
eig.computeDirect(M);
res = eig.eigenvalues();
}
};
template<typename T>
struct eigenvalues {
EIGEN_DEVICE_FUNC
void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
{
using namespace Eigen;
typedef Matrix<typename T::Scalar, T::RowsAtCompileTime, 1> Vec;
T M(in+i);
Map<Vec> res(out+i*Vec::MaxSizeAtCompileTime);
T A = M*M.adjoint();
SelfAdjointEigenSolver<T> eig;
eig.compute(M);
res = eig.eigenvalues();
}
};
template<typename T>
struct matrix_inverse {
EIGEN_DEVICE_FUNC
void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
{
using namespace Eigen;
T M(in+i);
Map<T> res(out+i*T::MaxSizeAtCompileTime);
res = M.inverse();
}
};
void test_gpu_basic()
{
ei_test_init_gpu();
int nthreads = 100;
Eigen::VectorXf in, out;
#if !defined(__CUDA_ARCH__) && !defined(__HIP_DEVICE_COMPILE__)
int data_size = nthreads * 512;
in.setRandom(data_size);
out.setRandom(data_size);
#endif
CALL_SUBTEST( run_and_compare_to_gpu(coeff_wise<Vector3f>(), nthreads, in, out) );
CALL_SUBTEST( run_and_compare_to_gpu(coeff_wise<Array44f>(), nthreads, in, out) );
#if !defined(EIGEN_USE_HIP)
// FIXME
// These subtests result in a compile failure on the HIP platform
//
// eigen-upstream/Eigen/src/Core/Replicate.h:61:65: error:
// base class 'internal::dense_xpr_base<Replicate<Array<float, 4, 1, 0, 4, 1>, -1, -1> >::type'
// (aka 'ArrayBase<Eigen::Replicate<Eigen::Array<float, 4, 1, 0, 4, 1>, -1, -1> >') has protected default constructor
CALL_SUBTEST( run_and_compare_to_gpu(replicate<Array4f>(), nthreads, in, out) );
CALL_SUBTEST( run_and_compare_to_gpu(replicate<Array33f>(), nthreads, in, out) );
#endif
CALL_SUBTEST( run_and_compare_to_gpu(redux<Array4f>(), nthreads, in, out) );
CALL_SUBTEST( run_and_compare_to_gpu(redux<Matrix3f>(), nthreads, in, out) );
CALL_SUBTEST( run_and_compare_to_gpu(prod_test<Matrix3f,Matrix3f>(), nthreads, in, out) );
CALL_SUBTEST( run_and_compare_to_gpu(prod_test<Matrix4f,Vector4f>(), nthreads, in, out) );
CALL_SUBTEST( run_and_compare_to_gpu(diagonal<Matrix3f,Vector3f>(), nthreads, in, out) );
CALL_SUBTEST( run_and_compare_to_gpu(diagonal<Matrix4f,Vector4f>(), nthreads, in, out) );
CALL_SUBTEST( run_and_compare_to_gpu(matrix_inverse<Matrix2f>(), nthreads, in, out) );
CALL_SUBTEST( run_and_compare_to_gpu(matrix_inverse<Matrix3f>(), nthreads, in, out) );
CALL_SUBTEST( run_and_compare_to_gpu(matrix_inverse<Matrix4f>(), nthreads, in, out) );
#if !defined(EIGEN_USE_HIP)
// FIXME
// These subtests result in a linking error on the HIP platform
CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues_direct<Matrix3f>(), nthreads, in, out) );
CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues_direct<Matrix2f>(), nthreads, in, out) );
CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues<Matrix4f>(), nthreads, in, out) );
#endif
}