eigen/unsupported/test/matrix_functions.h
Chen-Pang He bfaa7f4ffe Add test for matrix power.
Use Christoph Hertzberg's suggestion to use exponent laws.
2012-08-27 22:48:37 +01:00

48 lines
1.6 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2011 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <unsupported/Eigen/MatrixFunctions>
template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
struct generateTestMatrix;
// for real matrices, make sure none of the eigenvalues are negative
template <typename MatrixType>
struct generateTestMatrix<MatrixType,0>
{
static void run(MatrixType& result, typename MatrixType::Index size)
{
MatrixType mat = MatrixType::Random(size, size);
EigenSolver<MatrixType> es(mat);
typename EigenSolver<MatrixType>::EigenvalueType eivals = es.eigenvalues();
for (typename MatrixType::Index i = 0; i < size; ++i) {
if (eivals(i).imag() == 0 && eivals(i).real() < 0)
eivals(i) = -eivals(i);
}
result = (es.eigenvectors() * eivals.asDiagonal() * es.eigenvectors().inverse()).real();
}
};
// for complex matrices, any matrix is fine
template <typename MatrixType>
struct generateTestMatrix<MatrixType,1>
{
static void run(MatrixType& result, typename MatrixType::Index size)
{
result = MatrixType::Random(size, size);
}
};
template <typename Derived, typename OtherDerived>
double relerr(const MatrixBase<Derived>& A, const MatrixBase<OtherDerived>& B)
{
return std::sqrt((A - B).cwiseAbs2().sum() / (std::min)(A.cwiseAbs2().sum(), B.cwiseAbs2().sum()));
}