mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-21 07:19:46 +08:00
180 lines
5.1 KiB
C++
180 lines
5.1 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "common.h"
|
|
|
|
int EIGEN_BLAS_FUNC(axpy)(int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy)
|
|
{
|
|
Scalar* x = reinterpret_cast<Scalar*>(px);
|
|
Scalar* y = reinterpret_cast<Scalar*>(py);
|
|
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
|
|
|
|
if(*n<=0) return 0;
|
|
|
|
if(*incx==1 && *incy==1) vector(y,*n) += alpha * vector(x,*n);
|
|
else if(*incx>0 && *incy>0) vector(y,*n,*incy) += alpha * vector(x,*n,*incx);
|
|
else if(*incx>0 && *incy<0) vector(y,*n,-*incy).reverse() += alpha * vector(x,*n,*incx);
|
|
else if(*incx<0 && *incy>0) vector(y,*n,*incy) += alpha * vector(x,*n,-*incx).reverse();
|
|
else if(*incx<0 && *incy<0) vector(y,*n,-*incy).reverse() += alpha * vector(x,*n,-*incx).reverse();
|
|
|
|
return 0;
|
|
}
|
|
|
|
int EIGEN_BLAS_FUNC(copy)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
|
|
{
|
|
if(*n<=0) return 0;
|
|
|
|
Scalar* x = reinterpret_cast<Scalar*>(px);
|
|
Scalar* y = reinterpret_cast<Scalar*>(py);
|
|
|
|
// be carefull, *incx==0 is allowed !!
|
|
if(*incx==1 && *incy==1)
|
|
vector(y,*n) = vector(x,*n);
|
|
else
|
|
{
|
|
if(*incx<0) x = x - (*n-1)*(*incx);
|
|
if(*incy<0) y = y - (*n-1)*(*incy);
|
|
for(int i=0;i<*n;++i)
|
|
{
|
|
*y = *x;
|
|
x += *incx;
|
|
y += *incy;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int EIGEN_CAT(EIGEN_CAT(i,SCALAR_SUFFIX),amax_)(int *n, RealScalar *px, int *incx)
|
|
{
|
|
if(*n<=0) return 0;
|
|
Scalar* x = reinterpret_cast<Scalar*>(px);
|
|
|
|
DenseIndex ret;
|
|
if(*incx==1) vector(x,*n).cwiseAbs().maxCoeff(&ret);
|
|
else vector(x,*n,std::abs(*incx)).cwiseAbs().maxCoeff(&ret);
|
|
return ret+1;
|
|
}
|
|
|
|
int EIGEN_CAT(EIGEN_CAT(i,SCALAR_SUFFIX),amin_)(int *n, RealScalar *px, int *incx)
|
|
{
|
|
if(*n<=0) return 0;
|
|
Scalar* x = reinterpret_cast<Scalar*>(px);
|
|
|
|
DenseIndex ret;
|
|
if(*incx==1) vector(x,*n).cwiseAbs().minCoeff(&ret);
|
|
else vector(x,*n,std::abs(*incx)).cwiseAbs().minCoeff(&ret);
|
|
return ret+1;
|
|
}
|
|
|
|
int EIGEN_BLAS_FUNC(rotg)(RealScalar *pa, RealScalar *pb, RealScalar *pc, RealScalar *ps)
|
|
{
|
|
Scalar& a = *reinterpret_cast<Scalar*>(pa);
|
|
Scalar& b = *reinterpret_cast<Scalar*>(pb);
|
|
RealScalar* c = pc;
|
|
Scalar* s = reinterpret_cast<Scalar*>(ps);
|
|
|
|
#if !ISCOMPLEX
|
|
Scalar r,z;
|
|
Scalar aa = internal::abs(a);
|
|
Scalar ab = internal::abs(b);
|
|
if((aa+ab)==Scalar(0))
|
|
{
|
|
*c = 1;
|
|
*s = 0;
|
|
r = 0;
|
|
z = 0;
|
|
}
|
|
else
|
|
{
|
|
r = internal::sqrt(a*a + b*b);
|
|
Scalar amax = aa>ab ? a : b;
|
|
r = amax>0 ? r : -r;
|
|
*c = a/r;
|
|
*s = b/r;
|
|
z = 1;
|
|
if (aa > ab) z = *s;
|
|
if (ab > aa && *c!=RealScalar(0))
|
|
z = Scalar(1)/ *c;
|
|
}
|
|
*pa = r;
|
|
*pb = z;
|
|
#else
|
|
Scalar alpha;
|
|
RealScalar norm,scale;
|
|
if(internal::abs(a)==RealScalar(0))
|
|
{
|
|
*c = RealScalar(0);
|
|
*s = Scalar(1);
|
|
a = b;
|
|
}
|
|
else
|
|
{
|
|
scale = internal::abs(a) + internal::abs(b);
|
|
norm = scale*internal::sqrt((internal::abs2(a/scale))+ (internal::abs2(b/scale)));
|
|
alpha = a/internal::abs(a);
|
|
*c = internal::abs(a)/norm;
|
|
*s = alpha*internal::conj(b)/norm;
|
|
a = alpha*norm;
|
|
}
|
|
#endif
|
|
|
|
// JacobiRotation<Scalar> r;
|
|
// r.makeGivens(a,b);
|
|
// *c = r.c();
|
|
// *s = r.s();
|
|
|
|
return 0;
|
|
}
|
|
|
|
int EIGEN_BLAS_FUNC(scal)(int *n, RealScalar *palpha, RealScalar *px, int *incx)
|
|
{
|
|
if(*n<=0) return 0;
|
|
|
|
Scalar* x = reinterpret_cast<Scalar*>(px);
|
|
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
|
|
|
|
if(*incx==1) vector(x,*n) *= alpha;
|
|
else vector(x,*n,std::abs(*incx)) *= alpha;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int EIGEN_BLAS_FUNC(swap)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
|
|
{
|
|
if(*n<=0) return 0;
|
|
|
|
Scalar* x = reinterpret_cast<Scalar*>(px);
|
|
Scalar* y = reinterpret_cast<Scalar*>(py);
|
|
|
|
if(*incx==1 && *incy==1) vector(y,*n).swap(vector(x,*n));
|
|
else if(*incx>0 && *incy>0) vector(y,*n,*incy).swap(vector(x,*n,*incx));
|
|
else if(*incx>0 && *incy<0) vector(y,*n,-*incy).reverse().swap(vector(x,*n,*incx));
|
|
else if(*incx<0 && *incy>0) vector(y,*n,*incy).swap(vector(x,*n,-*incx).reverse());
|
|
else if(*incx<0 && *incy<0) vector(y,*n,-*incy).reverse().swap(vector(x,*n,-*incx).reverse());
|
|
|
|
return 1;
|
|
}
|
|
|