mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-27 07:29:52 +08:00
0c4ae56e37
Manually constructing an unaligned object declared as aligned invokes UB, so we cannot technically check for alignment from within the constructor. Newer versions of clang optimize away this check. Removing the affected tests.
193 lines
7.1 KiB
C++
193 lines
7.1 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include "main.h"
|
|
#include <Eigen/Geometry>
|
|
#include <Eigen/LU>
|
|
#include <Eigen/QR>
|
|
|
|
template<typename HyperplaneType> void hyperplane(const HyperplaneType& _plane)
|
|
{
|
|
/* this test covers the following files:
|
|
Hyperplane.h
|
|
*/
|
|
using std::abs;
|
|
const Index dim = _plane.dim();
|
|
enum { Options = HyperplaneType::Options };
|
|
typedef typename HyperplaneType::Scalar Scalar;
|
|
typedef typename HyperplaneType::RealScalar RealScalar;
|
|
typedef Matrix<Scalar, HyperplaneType::AmbientDimAtCompileTime, 1> VectorType;
|
|
typedef Matrix<Scalar, HyperplaneType::AmbientDimAtCompileTime,
|
|
HyperplaneType::AmbientDimAtCompileTime> MatrixType;
|
|
|
|
VectorType p0 = VectorType::Random(dim);
|
|
VectorType p1 = VectorType::Random(dim);
|
|
|
|
VectorType n0 = VectorType::Random(dim).normalized();
|
|
VectorType n1 = VectorType::Random(dim).normalized();
|
|
|
|
HyperplaneType pl0(n0, p0);
|
|
HyperplaneType pl1(n1, p1);
|
|
HyperplaneType pl2 = pl1;
|
|
|
|
Scalar s0 = internal::random<Scalar>();
|
|
Scalar s1 = internal::random<Scalar>();
|
|
|
|
VERIFY_IS_APPROX( n1.dot(n1), Scalar(1) );
|
|
|
|
VERIFY_IS_MUCH_SMALLER_THAN( pl0.absDistance(p0), Scalar(1) );
|
|
if(numext::abs2(s0)>RealScalar(1e-6))
|
|
VERIFY_IS_APPROX( pl1.signedDistance(p1 + n1 * s0), s0);
|
|
else
|
|
VERIFY_IS_MUCH_SMALLER_THAN( abs(pl1.signedDistance(p1 + n1 * s0) - s0), Scalar(1) );
|
|
VERIFY_IS_MUCH_SMALLER_THAN( pl1.signedDistance(pl1.projection(p0)), Scalar(1) );
|
|
VERIFY_IS_MUCH_SMALLER_THAN( pl1.absDistance(p1 + pl1.normal().unitOrthogonal() * s1), Scalar(1) );
|
|
|
|
// transform
|
|
if (!NumTraits<Scalar>::IsComplex)
|
|
{
|
|
MatrixType rot = MatrixType::Random(dim,dim).householderQr().householderQ();
|
|
DiagonalMatrix<Scalar,HyperplaneType::AmbientDimAtCompileTime> scaling(VectorType::Random());
|
|
Translation<Scalar,HyperplaneType::AmbientDimAtCompileTime> translation(VectorType::Random());
|
|
|
|
while(scaling.diagonal().cwiseAbs().minCoeff()<RealScalar(1e-4)) scaling.diagonal() = VectorType::Random();
|
|
|
|
pl2 = pl1;
|
|
VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot).absDistance(rot * p1), Scalar(1) );
|
|
pl2 = pl1;
|
|
VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot,Isometry).absDistance(rot * p1), Scalar(1) );
|
|
pl2 = pl1;
|
|
VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot*scaling).absDistance((rot*scaling) * p1), Scalar(1) );
|
|
VERIFY_IS_APPROX( pl2.normal().norm(), RealScalar(1) );
|
|
pl2 = pl1;
|
|
VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot*scaling*translation)
|
|
.absDistance((rot*scaling*translation) * p1), Scalar(1) );
|
|
VERIFY_IS_APPROX( pl2.normal().norm(), RealScalar(1) );
|
|
pl2 = pl1;
|
|
VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot*translation,Isometry)
|
|
.absDistance((rot*translation) * p1), Scalar(1) );
|
|
VERIFY_IS_APPROX( pl2.normal().norm(), RealScalar(1) );
|
|
}
|
|
|
|
// casting
|
|
const int Dim = HyperplaneType::AmbientDimAtCompileTime;
|
|
typedef typename GetDifferentType<Scalar>::type OtherScalar;
|
|
Hyperplane<OtherScalar,Dim,Options> hp1f = pl1.template cast<OtherScalar>();
|
|
VERIFY_IS_APPROX(hp1f.template cast<Scalar>(),pl1);
|
|
Hyperplane<Scalar,Dim,Options> hp1d = pl1.template cast<Scalar>();
|
|
VERIFY_IS_APPROX(hp1d.template cast<Scalar>(),pl1);
|
|
}
|
|
|
|
template<typename Scalar> void lines()
|
|
{
|
|
using std::abs;
|
|
typedef Hyperplane<Scalar, 2> HLine;
|
|
typedef ParametrizedLine<Scalar, 2> PLine;
|
|
typedef Matrix<Scalar,2,1> Vector;
|
|
typedef Matrix<Scalar,3,1> CoeffsType;
|
|
|
|
for(int i = 0; i < 10; i++)
|
|
{
|
|
Vector center = Vector::Random();
|
|
Vector u = Vector::Random();
|
|
Vector v = Vector::Random();
|
|
Scalar a = internal::random<Scalar>();
|
|
while (abs(a-1) < Scalar(1e-4)) a = internal::random<Scalar>();
|
|
while (u.norm() < Scalar(1e-4)) u = Vector::Random();
|
|
while (v.norm() < Scalar(1e-4)) v = Vector::Random();
|
|
|
|
HLine line_u = HLine::Through(center + u, center + a*u);
|
|
HLine line_v = HLine::Through(center + v, center + a*v);
|
|
|
|
// the line equations should be normalized so that a^2+b^2=1
|
|
VERIFY_IS_APPROX(line_u.normal().norm(), Scalar(1));
|
|
VERIFY_IS_APPROX(line_v.normal().norm(), Scalar(1));
|
|
|
|
Vector result = line_u.intersection(line_v);
|
|
|
|
// the lines should intersect at the point we called "center"
|
|
if(abs(a-1) > Scalar(1e-2) && abs(v.normalized().dot(u.normalized()))<Scalar(0.9))
|
|
VERIFY_IS_APPROX(result, center);
|
|
|
|
// check conversions between two types of lines
|
|
PLine pl(line_u); // gcc 3.3 will crash if we don't name this variable.
|
|
HLine line_u2(pl);
|
|
CoeffsType converted_coeffs = line_u2.coeffs();
|
|
if(line_u2.normal().dot(line_u.normal())<Scalar(0))
|
|
converted_coeffs = -line_u2.coeffs();
|
|
VERIFY(line_u.coeffs().isApprox(converted_coeffs));
|
|
}
|
|
}
|
|
|
|
template<typename Scalar> void planes()
|
|
{
|
|
using std::abs;
|
|
typedef Hyperplane<Scalar, 3> Plane;
|
|
typedef Matrix<Scalar,3,1> Vector;
|
|
|
|
for(int i = 0; i < 10; i++)
|
|
{
|
|
Vector v0 = Vector::Random();
|
|
Vector v1(v0), v2(v0);
|
|
if(internal::random<double>(0,1)>0.25)
|
|
v1 += Vector::Random();
|
|
if(internal::random<double>(0,1)>0.25)
|
|
v2 += v1 * std::pow(internal::random<Scalar>(0,1),internal::random<int>(1,16));
|
|
if(internal::random<double>(0,1)>0.25)
|
|
v2 += Vector::Random() * std::pow(internal::random<Scalar>(0,1),internal::random<int>(1,16));
|
|
|
|
Plane p0 = Plane::Through(v0, v1, v2);
|
|
|
|
VERIFY_IS_APPROX(p0.normal().norm(), Scalar(1));
|
|
VERIFY_IS_MUCH_SMALLER_THAN(p0.absDistance(v0), Scalar(1));
|
|
VERIFY_IS_MUCH_SMALLER_THAN(p0.absDistance(v1), Scalar(1));
|
|
VERIFY_IS_MUCH_SMALLER_THAN(p0.absDistance(v2), Scalar(1));
|
|
}
|
|
}
|
|
|
|
template<typename Scalar> void hyperplane_alignment()
|
|
{
|
|
typedef Hyperplane<Scalar,3,AutoAlign> Plane3a;
|
|
typedef Hyperplane<Scalar,3,DontAlign> Plane3u;
|
|
|
|
EIGEN_ALIGN_MAX Scalar array1[4];
|
|
EIGEN_ALIGN_MAX Scalar array2[4];
|
|
EIGEN_ALIGN_MAX Scalar array3[4+1];
|
|
Scalar* array3u = array3+1;
|
|
|
|
Plane3a *p1 = ::new(reinterpret_cast<void*>(array1)) Plane3a;
|
|
Plane3u *p2 = ::new(reinterpret_cast<void*>(array2)) Plane3u;
|
|
Plane3u *p3 = ::new(reinterpret_cast<void*>(array3u)) Plane3u;
|
|
|
|
p1->coeffs().setRandom();
|
|
*p2 = *p1;
|
|
*p3 = *p1;
|
|
|
|
VERIFY_IS_APPROX(p1->coeffs(), p2->coeffs());
|
|
VERIFY_IS_APPROX(p1->coeffs(), p3->coeffs());
|
|
}
|
|
|
|
|
|
EIGEN_DECLARE_TEST(geo_hyperplane)
|
|
{
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1( hyperplane(Hyperplane<float,2>()) );
|
|
CALL_SUBTEST_2( hyperplane(Hyperplane<float,3>()) );
|
|
CALL_SUBTEST_2( hyperplane(Hyperplane<float,3,DontAlign>()) );
|
|
CALL_SUBTEST_2( hyperplane_alignment<float>() );
|
|
CALL_SUBTEST_3( hyperplane(Hyperplane<double,4>()) );
|
|
CALL_SUBTEST_4( hyperplane(Hyperplane<std::complex<double>,5>()) );
|
|
CALL_SUBTEST_1( lines<float>() );
|
|
CALL_SUBTEST_3( lines<double>() );
|
|
CALL_SUBTEST_2( planes<float>() );
|
|
CALL_SUBTEST_5( planes<double>() );
|
|
}
|
|
}
|