mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-24 14:45:14 +08:00
151 lines
5.2 KiB
C++
151 lines
5.2 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "main.h"
|
|
#include <Eigen/LU>
|
|
|
|
template<typename MatrixType> void lu_non_invertible()
|
|
{
|
|
/* this test covers the following files:
|
|
LU.h
|
|
*/
|
|
int rows = ei_random<int>(20,200), cols = ei_random<int>(20,200), cols2 = ei_random<int>(20,200);
|
|
int rank = ei_random<int>(1, std::min(rows, cols)-1);
|
|
|
|
MatrixType m1(rows, cols), m2(cols, cols2), m3(rows, cols2), k(1,1);
|
|
createRandomMatrixOfRank(rank, rows, cols, m1);
|
|
|
|
LU<MatrixType> lu(m1);
|
|
typename LU<MatrixType>::KernelResultType m1kernel = lu.kernel();
|
|
typename LU<MatrixType>::ImageResultType m1image = lu.image();
|
|
|
|
VERIFY(rank == lu.rank());
|
|
VERIFY(cols - lu.rank() == lu.dimensionOfKernel());
|
|
VERIFY(!lu.isInjective());
|
|
VERIFY(!lu.isInvertible());
|
|
VERIFY(!lu.isSurjective());
|
|
VERIFY((m1 * m1kernel).isMuchSmallerThan(m1));
|
|
VERIFY(m1image.lu().rank() == rank);
|
|
MatrixType sidebyside(m1.rows(), m1.cols() + m1image.cols());
|
|
sidebyside << m1, m1image;
|
|
VERIFY(sidebyside.lu().rank() == rank);
|
|
m2 = MatrixType::Random(cols,cols2);
|
|
m3 = m1*m2;
|
|
m2 = MatrixType::Random(cols,cols2);
|
|
VERIFY(lu.solve(m3, &m2));
|
|
VERIFY_IS_APPROX(m3, m1*m2);
|
|
m3 = MatrixType::Random(rows,cols2);
|
|
VERIFY(!lu.solve(m3, &m2));
|
|
|
|
typedef Matrix<typename MatrixType::Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
|
|
SquareMatrixType m4(rows, rows), m5(rows, rows);
|
|
createRandomMatrixOfRank(rows/2, rows, rows, m4);
|
|
VERIFY(!m4.computeInverseWithCheck(&m5));
|
|
}
|
|
|
|
template<typename MatrixType> void lu_invertible()
|
|
{
|
|
/* this test covers the following files:
|
|
LU.h
|
|
*/
|
|
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
|
int size = ei_random<int>(10,200);
|
|
|
|
MatrixType m1(size, size), m2(size, size), m3(size, size);
|
|
m1 = MatrixType::Random(size,size);
|
|
|
|
if (ei_is_same_type<RealScalar,float>::ret)
|
|
{
|
|
// let's build a matrix more stable to inverse
|
|
MatrixType a = MatrixType::Random(size,size*2);
|
|
m1 += a * a.adjoint();
|
|
}
|
|
|
|
LU<MatrixType> lu(m1);
|
|
VERIFY(0 == lu.dimensionOfKernel());
|
|
VERIFY(size == lu.rank());
|
|
VERIFY(lu.isInjective());
|
|
VERIFY(lu.isSurjective());
|
|
VERIFY(lu.isInvertible());
|
|
VERIFY(lu.image().lu().isInvertible());
|
|
m3 = MatrixType::Random(size,size);
|
|
lu.solve(m3, &m2);
|
|
VERIFY_IS_APPROX(m3, m1*m2);
|
|
VERIFY_IS_APPROX(m2, lu.inverse()*m3);
|
|
m3 = MatrixType::Random(size,size);
|
|
VERIFY(lu.solve(m3, &m2));
|
|
}
|
|
|
|
template<typename MatrixType> void lu_verify_assert()
|
|
{
|
|
MatrixType tmp;
|
|
|
|
LU<MatrixType> lu;
|
|
VERIFY_RAISES_ASSERT(lu.matrixLU())
|
|
VERIFY_RAISES_ASSERT(lu.permutationP())
|
|
VERIFY_RAISES_ASSERT(lu.permutationQ())
|
|
VERIFY_RAISES_ASSERT(lu.computeKernel(&tmp))
|
|
VERIFY_RAISES_ASSERT(lu.computeImage(&tmp))
|
|
VERIFY_RAISES_ASSERT(lu.kernel())
|
|
VERIFY_RAISES_ASSERT(lu.image())
|
|
VERIFY_RAISES_ASSERT(lu.solve(tmp,&tmp))
|
|
VERIFY_RAISES_ASSERT(lu.determinant())
|
|
VERIFY_RAISES_ASSERT(lu.rank())
|
|
VERIFY_RAISES_ASSERT(lu.dimensionOfKernel())
|
|
VERIFY_RAISES_ASSERT(lu.isInjective())
|
|
VERIFY_RAISES_ASSERT(lu.isSurjective())
|
|
VERIFY_RAISES_ASSERT(lu.isInvertible())
|
|
VERIFY_RAISES_ASSERT(lu.computeInverse(&tmp))
|
|
VERIFY_RAISES_ASSERT(lu.inverse())
|
|
|
|
PartialLU<MatrixType> plu;
|
|
VERIFY_RAISES_ASSERT(plu.matrixLU())
|
|
VERIFY_RAISES_ASSERT(plu.permutationP())
|
|
VERIFY_RAISES_ASSERT(plu.solve(tmp,&tmp))
|
|
VERIFY_RAISES_ASSERT(plu.determinant())
|
|
VERIFY_RAISES_ASSERT(plu.computeInverse(&tmp))
|
|
VERIFY_RAISES_ASSERT(plu.inverse())
|
|
}
|
|
|
|
void test_lu()
|
|
{
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST( lu_non_invertible<MatrixXf>() );
|
|
CALL_SUBTEST( lu_non_invertible<MatrixXd>() );
|
|
CALL_SUBTEST( lu_non_invertible<MatrixXcf>() );
|
|
CALL_SUBTEST( lu_non_invertible<MatrixXcd>() );
|
|
CALL_SUBTEST( lu_invertible<MatrixXf>() );
|
|
CALL_SUBTEST( lu_invertible<MatrixXd>() );
|
|
CALL_SUBTEST( lu_invertible<MatrixXcf>() );
|
|
CALL_SUBTEST( lu_invertible<MatrixXcd>() );
|
|
}
|
|
|
|
CALL_SUBTEST( lu_verify_assert<Matrix3f>() );
|
|
CALL_SUBTEST( lu_verify_assert<Matrix3d>() );
|
|
CALL_SUBTEST( lu_verify_assert<MatrixXf>() );
|
|
CALL_SUBTEST( lu_verify_assert<MatrixXd>() );
|
|
CALL_SUBTEST( lu_verify_assert<MatrixXcf>() );
|
|
CALL_SUBTEST( lu_verify_assert<MatrixXcd>() );
|
|
}
|