mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-06 14:14:46 +08:00
0a0a805569
Fixed lazyness in umeyama. Added a few missing casts.
201 lines
6.5 KiB
C++
201 lines
6.5 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra. Eigen itself is part of the KDE project.
|
|
//
|
|
// Copyright (C) 2009 Hauke Heibel <hauke.heibel@gmail.com>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or1 FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "main.h"
|
|
|
|
#include <Eigen/Core>
|
|
#include <Eigen/Array>
|
|
#include <Eigen/Geometry>
|
|
|
|
#include <Eigen/LU> // required for MatrixBase::determinant
|
|
#include <Eigen/SVD> // required for SVD
|
|
|
|
using namespace Eigen;
|
|
|
|
// Constructs a random matrix from the unitary group U(size).
|
|
template <typename T>
|
|
Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> randMatrixUnitary(int size)
|
|
{
|
|
typedef T Scalar;
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
|
|
typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> MatrixType;
|
|
|
|
MatrixType Q;
|
|
|
|
int max_tries = 40;
|
|
double is_unitary = false;
|
|
|
|
while (!is_unitary && max_tries > 0)
|
|
{
|
|
// initialize random matrix
|
|
Q = MatrixType::Random(size, size);
|
|
|
|
// orthogonalize columns using the Gram-Schmidt algorithm
|
|
for (int col = 0; col < size; ++col)
|
|
{
|
|
typename MatrixType::ColXpr colVec = Q.col(col);
|
|
for (int prevCol = 0; prevCol < col; ++prevCol)
|
|
{
|
|
typename MatrixType::ColXpr prevColVec = Q.col(prevCol);
|
|
colVec -= colVec.dot(prevColVec)*prevColVec;
|
|
}
|
|
Q.col(col) = colVec.normalized();
|
|
}
|
|
|
|
// this additional orthogonalization is not necessary in theory but should enhance
|
|
// the numerical orthogonality of the matrix
|
|
for (int row = 0; row < size; ++row)
|
|
{
|
|
typename MatrixType::RowXpr rowVec = Q.row(row);
|
|
for (int prevRow = 0; prevRow < row; ++prevRow)
|
|
{
|
|
typename MatrixType::RowXpr prevRowVec = Q.row(prevRow);
|
|
rowVec -= rowVec.dot(prevRowVec)*prevRowVec;
|
|
}
|
|
Q.row(row) = rowVec.normalized();
|
|
}
|
|
|
|
// final check
|
|
is_unitary = Q.isUnitary();
|
|
--max_tries;
|
|
}
|
|
|
|
if (max_tries == 0)
|
|
ei_assert(false && "randMatrixUnitary: Could not construct unitary matrix!");
|
|
|
|
return Q;
|
|
}
|
|
|
|
// Constructs a random matrix from the special unitary group SU(size).
|
|
template <typename T>
|
|
Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> randMatrixSpecialUnitary(int size)
|
|
{
|
|
typedef T Scalar;
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
|
|
typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> MatrixType;
|
|
|
|
// initialize unitary matrix
|
|
MatrixType Q = randMatrixUnitary<Scalar>(size);
|
|
|
|
// tweak the first column to make the determinant be 1
|
|
Q.col(0) *= ei_conj(Q.determinant());
|
|
|
|
return Q;
|
|
}
|
|
|
|
template <typename MatrixType>
|
|
void run_test(int dim, int num_elements)
|
|
{
|
|
typedef typename ei_traits<MatrixType>::Scalar Scalar;
|
|
typedef Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> MatrixX;
|
|
typedef Matrix<Scalar, Eigen::Dynamic, 1> VectorX;
|
|
|
|
// MUST be positive because in any other case det(cR_t) may become negative for
|
|
// odd dimensions!
|
|
const Scalar c = ei_abs(ei_random<Scalar>());
|
|
|
|
MatrixX R = randMatrixSpecialUnitary<Scalar>(dim);
|
|
VectorX t = Scalar(50)*VectorX::Random(dim,1);
|
|
|
|
MatrixX cR_t = MatrixX::Identity(dim+1,dim+1);
|
|
cR_t.block(0,0,dim,dim) = c*R;
|
|
cR_t.block(0,dim,dim,1) = t;
|
|
|
|
MatrixX src = MatrixX::Random(dim+1, num_elements);
|
|
src.row(dim) = Matrix<Scalar, 1, Dynamic>::Constant(num_elements, Scalar(1));
|
|
|
|
MatrixX dst = cR_t*src;
|
|
|
|
MatrixX cR_t_umeyama = umeyama(src.block(0,0,dim,num_elements), dst.block(0,0,dim,num_elements));
|
|
|
|
const Scalar error = ( cR_t_umeyama*src - dst ).cwise().square().sum();
|
|
|
|
VERIFY(error < Scalar(10)*std::numeric_limits<Scalar>::epsilon());
|
|
}
|
|
|
|
template<typename Scalar, int Dimension>
|
|
void run_fixed_size_test(int num_elements)
|
|
{
|
|
typedef Matrix<Scalar, Dimension+1, Dynamic> MatrixX;
|
|
typedef Matrix<Scalar, Dimension+1, Dimension+1> HomMatrix;
|
|
typedef Matrix<Scalar, Dimension, Dimension> FixedMatrix;
|
|
typedef Matrix<Scalar, Dimension, 1> FixedVector;
|
|
|
|
const int dim = Dimension;
|
|
|
|
// MUST be positive because in any other case det(cR_t) may become negative for
|
|
// odd dimensions!
|
|
const Scalar c = ei_abs(ei_random<Scalar>());
|
|
|
|
FixedMatrix R = randMatrixSpecialUnitary<Scalar>(dim);
|
|
FixedVector t = Scalar(50)*FixedVector::Random(dim,1);
|
|
|
|
HomMatrix cR_t = HomMatrix::Identity(dim+1,dim+1);
|
|
cR_t.block(0,0,dim,dim) = c*R;
|
|
cR_t.block(0,dim,dim,1) = t;
|
|
|
|
MatrixX src = MatrixX::Random(dim+1, num_elements);
|
|
src.row(dim) = Matrix<Scalar, 1, Dynamic>::Constant(num_elements, Scalar(1));
|
|
|
|
MatrixX dst = cR_t*src;
|
|
|
|
Block<MatrixX, Dimension, Dynamic> src_block(src,0,0,dim,num_elements);
|
|
Block<MatrixX, Dimension, Dynamic> dst_block(dst,0,0,dim,num_elements);
|
|
|
|
HomMatrix cR_t_umeyama = umeyama(src_block, dst_block);
|
|
|
|
const Scalar error = ( cR_t_umeyama*src - dst ).cwise().square().sum();
|
|
|
|
VERIFY(error < Scalar(10)*std::numeric_limits<Scalar>::epsilon());
|
|
}
|
|
|
|
void test_umeyama()
|
|
{
|
|
for (int i=0; i<g_repeat; ++i)
|
|
{
|
|
const int num_elements = ei_random<int>(40,500);
|
|
|
|
// works also for dimensions bigger than 3...
|
|
for (int dim=2; dim<8; ++dim)
|
|
{
|
|
CALL_SUBTEST(run_test<MatrixXd>(dim, num_elements));
|
|
CALL_SUBTEST(run_test<MatrixXf>(dim, num_elements));
|
|
}
|
|
|
|
CALL_SUBTEST((run_fixed_size_test<float, 2>(num_elements)));
|
|
CALL_SUBTEST((run_fixed_size_test<float, 3>(num_elements)));
|
|
CALL_SUBTEST((run_fixed_size_test<float, 4>(num_elements)));
|
|
|
|
CALL_SUBTEST((run_fixed_size_test<double, 2>(num_elements)));
|
|
CALL_SUBTEST((run_fixed_size_test<double, 3>(num_elements)));
|
|
CALL_SUBTEST((run_fixed_size_test<double, 4>(num_elements)));
|
|
}
|
|
|
|
// Those two calls don't compile and result in meaningful error messages!
|
|
// umeyama(MatrixXcf(),MatrixXcf());
|
|
// umeyama(MatrixXcd(),MatrixXcd());
|
|
}
|