eigen/test/sparse_basic.cpp

309 lines
10 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "sparse.h"
template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& ref)
{
typedef typename SparseMatrixType::Index Index;
const Index rows = ref.rows();
const Index cols = ref.cols();
typedef typename SparseMatrixType::Scalar Scalar;
enum { Flags = SparseMatrixType::Flags };
double density = (std::max)(8./(rows*cols), 0.01);
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
typedef Matrix<Scalar,Dynamic,1> DenseVector;
Scalar eps = 1e-6;
SparseMatrixType m(rows, cols);
DenseMatrix refMat = DenseMatrix::Zero(rows, cols);
DenseVector vec1 = DenseVector::Random(rows);
Scalar s1 = internal::random<Scalar>();
std::vector<Vector2i> zeroCoords;
std::vector<Vector2i> nonzeroCoords;
initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords);
if (zeroCoords.size()==0 || nonzeroCoords.size()==0)
return;
// test coeff and coeffRef
for (int i=0; i<(int)zeroCoords.size(); ++i)
{
VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps );
if(internal::is_same<SparseMatrixType,SparseMatrix<Scalar,Flags> >::value)
VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[0].x(),zeroCoords[0].y()) = 5 );
}
VERIFY_IS_APPROX(m, refMat);
m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
VERIFY_IS_APPROX(m, refMat);
/*
// test InnerIterators and Block expressions
for (int t=0; t<10; ++t)
{
int j = internal::random<int>(0,cols-1);
int i = internal::random<int>(0,rows-1);
int w = internal::random<int>(1,cols-j-1);
int h = internal::random<int>(1,rows-i-1);
// VERIFY_IS_APPROX(m.block(i,j,h,w), refMat.block(i,j,h,w));
for(int c=0; c<w; c++)
{
VERIFY_IS_APPROX(m.block(i,j,h,w).col(c), refMat.block(i,j,h,w).col(c));
for(int r=0; r<h; r++)
{
// VERIFY_IS_APPROX(m.block(i,j,h,w).col(c).coeff(r), refMat.block(i,j,h,w).col(c).coeff(r));
}
}
// for(int r=0; r<h; r++)
// {
// VERIFY_IS_APPROX(m.block(i,j,h,w).row(r), refMat.block(i,j,h,w).row(r));
// for(int c=0; c<w; c++)
// {
// VERIFY_IS_APPROX(m.block(i,j,h,w).row(r).coeff(c), refMat.block(i,j,h,w).row(r).coeff(c));
// }
// }
}
for(int c=0; c<cols; c++)
{
VERIFY_IS_APPROX(m.col(c) + m.col(c), (m + m).col(c));
VERIFY_IS_APPROX(m.col(c) + m.col(c), refMat.col(c) + refMat.col(c));
}
for(int r=0; r<rows; r++)
{
VERIFY_IS_APPROX(m.row(r) + m.row(r), (m + m).row(r));
VERIFY_IS_APPROX(m.row(r) + m.row(r), refMat.row(r) + refMat.row(r));
}
*/
// test insert (inner random)
{
DenseMatrix m1(rows,cols);
m1.setZero();
SparseMatrixType m2(rows,cols);
m2.reserve(10);
for (int j=0; j<cols; ++j)
{
for (int k=0; k<rows/2; ++k)
{
int i = internal::random<int>(0,rows-1);
if (m1.coeff(i,j)==Scalar(0))
m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
}
}
m2.finalize();
VERIFY_IS_APPROX(m2,m1);
}
// test insert (fully random)
{
DenseMatrix m1(rows,cols);
m1.setZero();
SparseMatrixType m2(rows,cols);
m2.reserve(10);
for (int k=0; k<rows*cols; ++k)
{
int i = internal::random<int>(0,rows-1);
int j = internal::random<int>(0,cols-1);
if (m1.coeff(i,j)==Scalar(0))
m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
}
m2.finalize();
VERIFY_IS_APPROX(m2,m1);
}
// test insert (un-compressed)
for(int mode=0;mode<4;++mode)
{
DenseMatrix m1(rows,cols);
m1.setZero();
SparseMatrixType m2(rows,cols);
VectorXi r(VectorXi::Constant(m2.outerSize(), ((mode%2)==0) ? m2.innerSize() : std::max<int>(1,m2.innerSize()/8)));
m2.reserve(r);
for (int k=0; k<rows*cols; ++k)
{
int i = internal::random<int>(0,rows-1);
int j = internal::random<int>(0,cols-1);
if (m1.coeff(i,j)==Scalar(0))
m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
if(mode==3)
m2.reserve(r);
}
m2.finalize();
m2.makeCompressed();
VERIFY_IS_APPROX(m2,m1);
}
// test basic computations
{
DenseMatrix refM1 = DenseMatrix::Zero(rows, rows);
DenseMatrix refM2 = DenseMatrix::Zero(rows, rows);
DenseMatrix refM3 = DenseMatrix::Zero(rows, rows);
DenseMatrix refM4 = DenseMatrix::Zero(rows, rows);
SparseMatrixType m1(rows, rows);
SparseMatrixType m2(rows, rows);
SparseMatrixType m3(rows, rows);
SparseMatrixType m4(rows, rows);
initSparse<Scalar>(density, refM1, m1);
initSparse<Scalar>(density, refM2, m2);
initSparse<Scalar>(density, refM3, m3);
initSparse<Scalar>(density, refM4, m4);
VERIFY_IS_APPROX(m1+m2, refM1+refM2);
VERIFY_IS_APPROX(m1+m2+m3, refM1+refM2+refM3);
VERIFY_IS_APPROX(m3.cwiseProduct(m1+m2), refM3.cwiseProduct(refM1+refM2));
VERIFY_IS_APPROX(m1*s1-m2, refM1*s1-refM2);
VERIFY_IS_APPROX(m1*=s1, refM1*=s1);
VERIFY_IS_APPROX(m1/=s1, refM1/=s1);
VERIFY_IS_APPROX(m1+=m2, refM1+=refM2);
VERIFY_IS_APPROX(m1-=m2, refM1-=refM2);
VERIFY_IS_APPROX(m1.col(0).dot(refM2.row(0)), refM1.col(0).dot(refM2.row(0)));
refM4.setRandom();
// sparse cwise* dense
VERIFY_IS_APPROX(m3.cwiseProduct(refM4), refM3.cwiseProduct(refM4));
// VERIFY_IS_APPROX(m3.cwise()/refM4, refM3.cwise()/refM4);
}
// test transpose
{
DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
SparseMatrixType m2(rows, rows);
initSparse<Scalar>(density, refMat2, m2);
VERIFY_IS_APPROX(m2.transpose().eval(), refMat2.transpose().eval());
VERIFY_IS_APPROX(m2.transpose(), refMat2.transpose());
VERIFY_IS_APPROX(SparseMatrixType(m2.adjoint()), refMat2.adjoint());
}
// test innerVector()
{
DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
SparseMatrixType m2(rows, rows);
initSparse<Scalar>(density, refMat2, m2);
int j0 = internal::random<int>(0,rows-1);
int j1 = internal::random<int>(0,rows-1);
VERIFY_IS_APPROX(m2.innerVector(j0), refMat2.col(j0));
VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), refMat2.col(j0)+refMat2.col(j1));
//m2.innerVector(j0) = 2*m2.innerVector(j1);
//refMat2.col(j0) = 2*refMat2.col(j1);
//VERIFY_IS_APPROX(m2, refMat2);
}
// test innerVectors()
{
DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
SparseMatrixType m2(rows, rows);
initSparse<Scalar>(density, refMat2, m2);
int j0 = internal::random<int>(0,rows-2);
int j1 = internal::random<int>(0,rows-2);
int n0 = internal::random<int>(1,rows-(std::max)(j0,j1));
VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(0,j0,rows,n0));
VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0),
refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0));
//m2.innerVectors(j0,n0) = m2.innerVectors(j0,n0) + m2.innerVectors(j1,n0);
//refMat2.block(0,j0,rows,n0) = refMat2.block(0,j0,rows,n0) + refMat2.block(0,j1,rows,n0);
}
// test prune
{
SparseMatrixType m2(rows, rows);
DenseMatrix refM2(rows, rows);
refM2.setZero();
int countFalseNonZero = 0;
int countTrueNonZero = 0;
for (int j=0; j<m2.outerSize(); ++j)
{
m2.startVec(j);
for (int i=0; i<m2.innerSize(); ++i)
{
float x = internal::random<float>(0,1);
if (x<0.1)
{
// do nothing
}
else if (x<0.5)
{
countFalseNonZero++;
m2.insertBackByOuterInner(j,i) = Scalar(0);
}
else
{
countTrueNonZero++;
m2.insertBackByOuterInner(j,i) = refM2(i,j) = Scalar(1);
}
}
}
m2.finalize();
VERIFY(countFalseNonZero+countTrueNonZero == m2.nonZeros());
VERIFY_IS_APPROX(m2, refM2);
m2.prune(Scalar(1));
VERIFY(countTrueNonZero==m2.nonZeros());
VERIFY_IS_APPROX(m2, refM2);
}
// test selfadjointView
{
DenseMatrix refMat2(rows, rows), refMat3(rows, rows);
SparseMatrixType m2(rows, rows), m3(rows, rows);
initSparse<Scalar>(density, refMat2, m2);
refMat3 = refMat2.template selfadjointView<Lower>();
m3 = m2.template selfadjointView<Lower>();
VERIFY_IS_APPROX(m3, refMat3);
}
// test sparseView
{
DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
SparseMatrixType m2(rows, rows);
initSparse<Scalar>(density, refMat2, m2);
VERIFY_IS_APPROX(m2.eval(), refMat2.sparseView().eval());
}
}
void test_sparse_basic()
{
for(int i = 0; i < g_repeat; i++) {
int s = Eigen::internal::random<int>(1,50);
CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(8, 8)) ));
CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double> >(s, s)) ));
CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(s, s)) ));
CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double,ColMajor,long int>(s, s)) ));
CALL_SUBTEST_3(( sparse_basic(DynamicSparseMatrix<double>(s, s)) ));
CALL_SUBTEST_3(( sparse_basic(DynamicSparseMatrix<double,ColMajor,long int>(s, s)) ));
}
}