mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-27 07:29:52 +08:00
00f32752f7
* Unifying all loadLocalTile from lhs and rhs to an extract_block function. * Adding get_tensor operation which was missing in TensorContractionMapper. * Adding the -D method missing from cmake for Disable_Skinny Contraction operation. * Wrapping all the indices in TensorScanSycl into Scan parameter struct. * Fixing typo in Device SYCL * Unifying load to private register for tall/skinny no shared * Unifying load to vector tile for tensor-vector/vector-tensor operation * Removing all the LHS/RHS class for extracting data from global * Removing Outputfunction from TensorContractionSkinnyNoshared. * Combining the local memory version of tall/skinny and normal tensor contraction into one kernel. * Combining the no-local memory version of tall/skinny and normal tensor contraction into one kernel. * Combining General Tensor-Vector and VectorTensor contraction into one kernel. * Making double buffering optional for Tensor contraction when local memory is version is used. * Modifying benchmark to accept custom Reduction Sizes * Disabling AVX optimization for SYCL backend on the host to allow SSE optimization to the host * Adding Test for SYCL * Modifying SYCL CMake
624 lines
26 KiB
C++
624 lines
26 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2016
|
|
// Mehdi Goli Codeplay Software Ltd.
|
|
// Ralph Potter Codeplay Software Ltd.
|
|
// Luke Iwanski Codeplay Software Ltd.
|
|
// Contact: <eigen@codeplay.com>
|
|
// Benoit Steiner <benoit.steiner.goog@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
|
|
#define EIGEN_TEST_NO_LONGDOUBLE
|
|
#define EIGEN_TEST_NO_COMPLEX
|
|
|
|
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t
|
|
#define EIGEN_USE_SYCL
|
|
|
|
#include "main.h"
|
|
|
|
#include <Eigen/CXX11/Tensor>
|
|
|
|
using Eigen::Tensor;
|
|
|
|
template <typename DataType, int DataLayout, typename IndexType>
|
|
static void test_static_chip_sycl(const Eigen::SyclDevice& sycl_device)
|
|
{
|
|
IndexType sizeDim1 = 2;
|
|
IndexType sizeDim2 = 3;
|
|
IndexType sizeDim3 = 5;
|
|
IndexType sizeDim4 = 7;
|
|
IndexType sizeDim5 = 11;
|
|
|
|
array<IndexType, 5> tensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4, sizeDim5}};
|
|
array<IndexType, 4> chip1TensorRange = {{sizeDim2, sizeDim3, sizeDim4, sizeDim5}};
|
|
|
|
Tensor<DataType, 5, DataLayout,IndexType> tensor(tensorRange);
|
|
Tensor<DataType, 4, DataLayout,IndexType> chip1(chip1TensorRange);
|
|
|
|
tensor.setRandom();
|
|
|
|
const size_t tensorBuffSize =tensor.size()*sizeof(DataType);
|
|
const size_t chip1TensorBuffSize =chip1.size()*sizeof(DataType);
|
|
DataType* gpu_data_tensor = static_cast<DataType*>(sycl_device.allocate(tensorBuffSize));
|
|
DataType* gpu_data_chip1 = static_cast<DataType*>(sycl_device.allocate(chip1TensorBuffSize));
|
|
|
|
TensorMap<Tensor<DataType, 5, DataLayout,IndexType>> gpu_tensor(gpu_data_tensor, tensorRange);
|
|
TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_chip1(gpu_data_chip1, chip1TensorRange);
|
|
|
|
sycl_device.memcpyHostToDevice(gpu_data_tensor, tensor.data(), tensorBuffSize);
|
|
gpu_chip1.device(sycl_device)=gpu_tensor.template chip<0l>(1l);
|
|
sycl_device.memcpyDeviceToHost(chip1.data(), gpu_data_chip1, chip1TensorBuffSize);
|
|
|
|
VERIFY_IS_EQUAL(chip1.dimension(0), sizeDim2);
|
|
VERIFY_IS_EQUAL(chip1.dimension(1), sizeDim3);
|
|
VERIFY_IS_EQUAL(chip1.dimension(2), sizeDim4);
|
|
VERIFY_IS_EQUAL(chip1.dimension(3), sizeDim5);
|
|
|
|
for (IndexType i = 0; i < sizeDim2; ++i) {
|
|
for (IndexType j = 0; j < sizeDim3; ++j) {
|
|
for (IndexType k = 0; k < sizeDim4; ++k) {
|
|
for (IndexType l = 0; l < sizeDim5; ++l) {
|
|
VERIFY_IS_EQUAL(chip1(i,j,k,l), tensor(1l,i,j,k,l));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
array<IndexType, 4> chip2TensorRange = {{sizeDim1, sizeDim3, sizeDim4, sizeDim5}};
|
|
Tensor<DataType, 4, DataLayout,IndexType> chip2(chip2TensorRange);
|
|
const size_t chip2TensorBuffSize =chip2.size()*sizeof(DataType);
|
|
DataType* gpu_data_chip2 = static_cast<DataType*>(sycl_device.allocate(chip2TensorBuffSize));
|
|
TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_chip2(gpu_data_chip2, chip2TensorRange);
|
|
|
|
gpu_chip2.device(sycl_device)=gpu_tensor.template chip<1l>(1l);
|
|
sycl_device.memcpyDeviceToHost(chip2.data(), gpu_data_chip2, chip2TensorBuffSize);
|
|
|
|
VERIFY_IS_EQUAL(chip2.dimension(0), sizeDim1);
|
|
VERIFY_IS_EQUAL(chip2.dimension(1), sizeDim3);
|
|
VERIFY_IS_EQUAL(chip2.dimension(2), sizeDim4);
|
|
VERIFY_IS_EQUAL(chip2.dimension(3), sizeDim5);
|
|
|
|
for (IndexType i = 0; i < sizeDim1; ++i) {
|
|
for (IndexType j = 0; j < sizeDim3; ++j) {
|
|
for (IndexType k = 0; k < sizeDim4; ++k) {
|
|
for (IndexType l = 0; l < sizeDim5; ++l) {
|
|
VERIFY_IS_EQUAL(chip2(i,j,k,l), tensor(i,1l,j,k,l));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
array<IndexType, 4> chip3TensorRange = {{sizeDim1, sizeDim2, sizeDim4, sizeDim5}};
|
|
Tensor<DataType, 4, DataLayout,IndexType> chip3(chip3TensorRange);
|
|
const size_t chip3TensorBuffSize =chip3.size()*sizeof(DataType);
|
|
DataType* gpu_data_chip3 = static_cast<DataType*>(sycl_device.allocate(chip3TensorBuffSize));
|
|
TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_chip3(gpu_data_chip3, chip3TensorRange);
|
|
|
|
gpu_chip3.device(sycl_device)=gpu_tensor.template chip<2l>(2l);
|
|
sycl_device.memcpyDeviceToHost(chip3.data(), gpu_data_chip3, chip3TensorBuffSize);
|
|
|
|
VERIFY_IS_EQUAL(chip3.dimension(0), sizeDim1);
|
|
VERIFY_IS_EQUAL(chip3.dimension(1), sizeDim2);
|
|
VERIFY_IS_EQUAL(chip3.dimension(2), sizeDim4);
|
|
VERIFY_IS_EQUAL(chip3.dimension(3), sizeDim5);
|
|
|
|
for (IndexType i = 0; i < sizeDim1; ++i) {
|
|
for (IndexType j = 0; j < sizeDim2; ++j) {
|
|
for (IndexType k = 0; k < sizeDim4; ++k) {
|
|
for (IndexType l = 0; l < sizeDim5; ++l) {
|
|
VERIFY_IS_EQUAL(chip3(i,j,k,l), tensor(i,j,2l,k,l));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
array<IndexType, 4> chip4TensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim5}};
|
|
Tensor<DataType, 4, DataLayout,IndexType> chip4(chip4TensorRange);
|
|
const size_t chip4TensorBuffSize =chip4.size()*sizeof(DataType);
|
|
DataType* gpu_data_chip4 = static_cast<DataType*>(sycl_device.allocate(chip4TensorBuffSize));
|
|
TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_chip4(gpu_data_chip4, chip4TensorRange);
|
|
|
|
gpu_chip4.device(sycl_device)=gpu_tensor.template chip<3l>(5l);
|
|
sycl_device.memcpyDeviceToHost(chip4.data(), gpu_data_chip4, chip4TensorBuffSize);
|
|
|
|
VERIFY_IS_EQUAL(chip4.dimension(0), sizeDim1);
|
|
VERIFY_IS_EQUAL(chip4.dimension(1), sizeDim2);
|
|
VERIFY_IS_EQUAL(chip4.dimension(2), sizeDim3);
|
|
VERIFY_IS_EQUAL(chip4.dimension(3), sizeDim5);
|
|
|
|
for (IndexType i = 0; i < sizeDim1; ++i) {
|
|
for (IndexType j = 0; j < sizeDim2; ++j) {
|
|
for (IndexType k = 0; k < sizeDim3; ++k) {
|
|
for (IndexType l = 0; l < sizeDim5; ++l) {
|
|
VERIFY_IS_EQUAL(chip4(i,j,k,l), tensor(i,j,k,5l,l));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
array<IndexType, 4> chip5TensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4}};
|
|
Tensor<DataType, 4, DataLayout,IndexType> chip5(chip5TensorRange);
|
|
const size_t chip5TensorBuffSize =chip5.size()*sizeof(DataType);
|
|
DataType* gpu_data_chip5 = static_cast<DataType*>(sycl_device.allocate(chip5TensorBuffSize));
|
|
TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_chip5(gpu_data_chip5, chip5TensorRange);
|
|
|
|
gpu_chip5.device(sycl_device)=gpu_tensor.template chip<4l>(7l);
|
|
sycl_device.memcpyDeviceToHost(chip5.data(), gpu_data_chip5, chip5TensorBuffSize);
|
|
|
|
VERIFY_IS_EQUAL(chip5.dimension(0), sizeDim1);
|
|
VERIFY_IS_EQUAL(chip5.dimension(1), sizeDim2);
|
|
VERIFY_IS_EQUAL(chip5.dimension(2), sizeDim3);
|
|
VERIFY_IS_EQUAL(chip5.dimension(3), sizeDim4);
|
|
|
|
for (IndexType i = 0; i < sizeDim1; ++i) {
|
|
for (IndexType j = 0; j < sizeDim2; ++j) {
|
|
for (IndexType k = 0; k < sizeDim3; ++k) {
|
|
for (IndexType l = 0; l < sizeDim4; ++l) {
|
|
VERIFY_IS_EQUAL(chip5(i,j,k,l), tensor(i,j,k,l,7l));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
sycl_device.deallocate(gpu_data_tensor);
|
|
sycl_device.deallocate(gpu_data_chip1);
|
|
sycl_device.deallocate(gpu_data_chip2);
|
|
sycl_device.deallocate(gpu_data_chip3);
|
|
sycl_device.deallocate(gpu_data_chip4);
|
|
sycl_device.deallocate(gpu_data_chip5);
|
|
}
|
|
|
|
template <typename DataType, int DataLayout, typename IndexType>
|
|
static void test_dynamic_chip_sycl(const Eigen::SyclDevice& sycl_device)
|
|
{
|
|
IndexType sizeDim1 = 2;
|
|
IndexType sizeDim2 = 3;
|
|
IndexType sizeDim3 = 5;
|
|
IndexType sizeDim4 = 7;
|
|
IndexType sizeDim5 = 11;
|
|
|
|
array<IndexType, 5> tensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4, sizeDim5}};
|
|
array<IndexType, 4> chip1TensorRange = {{sizeDim2, sizeDim3, sizeDim4, sizeDim5}};
|
|
|
|
Tensor<DataType, 5, DataLayout,IndexType> tensor(tensorRange);
|
|
Tensor<DataType, 4, DataLayout,IndexType> chip1(chip1TensorRange);
|
|
|
|
tensor.setRandom();
|
|
|
|
const size_t tensorBuffSize =tensor.size()*sizeof(DataType);
|
|
const size_t chip1TensorBuffSize =chip1.size()*sizeof(DataType);
|
|
DataType* gpu_data_tensor = static_cast<DataType*>(sycl_device.allocate(tensorBuffSize));
|
|
DataType* gpu_data_chip1 = static_cast<DataType*>(sycl_device.allocate(chip1TensorBuffSize));
|
|
|
|
TensorMap<Tensor<DataType, 5, DataLayout,IndexType>> gpu_tensor(gpu_data_tensor, tensorRange);
|
|
TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_chip1(gpu_data_chip1, chip1TensorRange);
|
|
|
|
sycl_device.memcpyHostToDevice(gpu_data_tensor, tensor.data(), tensorBuffSize);
|
|
gpu_chip1.device(sycl_device)=gpu_tensor.chip(1l,0l);
|
|
sycl_device.memcpyDeviceToHost(chip1.data(), gpu_data_chip1, chip1TensorBuffSize);
|
|
|
|
VERIFY_IS_EQUAL(chip1.dimension(0), sizeDim2);
|
|
VERIFY_IS_EQUAL(chip1.dimension(1), sizeDim3);
|
|
VERIFY_IS_EQUAL(chip1.dimension(2), sizeDim4);
|
|
VERIFY_IS_EQUAL(chip1.dimension(3), sizeDim5);
|
|
|
|
for (IndexType i = 0; i < sizeDim2; ++i) {
|
|
for (IndexType j = 0; j < sizeDim3; ++j) {
|
|
for (IndexType k = 0; k < sizeDim4; ++k) {
|
|
for (IndexType l = 0; l < sizeDim5; ++l) {
|
|
VERIFY_IS_EQUAL(chip1(i,j,k,l), tensor(1l,i,j,k,l));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
array<IndexType, 4> chip2TensorRange = {{sizeDim1, sizeDim3, sizeDim4, sizeDim5}};
|
|
Tensor<DataType, 4, DataLayout,IndexType> chip2(chip2TensorRange);
|
|
const size_t chip2TensorBuffSize =chip2.size()*sizeof(DataType);
|
|
DataType* gpu_data_chip2 = static_cast<DataType*>(sycl_device.allocate(chip2TensorBuffSize));
|
|
TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_chip2(gpu_data_chip2, chip2TensorRange);
|
|
|
|
gpu_chip2.device(sycl_device)=gpu_tensor.chip(1l,1l);
|
|
sycl_device.memcpyDeviceToHost(chip2.data(), gpu_data_chip2, chip2TensorBuffSize);
|
|
|
|
VERIFY_IS_EQUAL(chip2.dimension(0), sizeDim1);
|
|
VERIFY_IS_EQUAL(chip2.dimension(1), sizeDim3);
|
|
VERIFY_IS_EQUAL(chip2.dimension(2), sizeDim4);
|
|
VERIFY_IS_EQUAL(chip2.dimension(3), sizeDim5);
|
|
|
|
for (IndexType i = 0; i < sizeDim1; ++i) {
|
|
for (IndexType j = 0; j < sizeDim3; ++j) {
|
|
for (IndexType k = 0; k < sizeDim4; ++k) {
|
|
for (IndexType l = 0; l < sizeDim5; ++l) {
|
|
VERIFY_IS_EQUAL(chip2(i,j,k,l), tensor(i,1l,j,k,l));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
array<IndexType, 4> chip3TensorRange = {{sizeDim1, sizeDim2, sizeDim4, sizeDim5}};
|
|
Tensor<DataType, 4, DataLayout,IndexType> chip3(chip3TensorRange);
|
|
const size_t chip3TensorBuffSize =chip3.size()*sizeof(DataType);
|
|
DataType* gpu_data_chip3 = static_cast<DataType*>(sycl_device.allocate(chip3TensorBuffSize));
|
|
TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_chip3(gpu_data_chip3, chip3TensorRange);
|
|
|
|
gpu_chip3.device(sycl_device)=gpu_tensor.chip(2l,2l);
|
|
sycl_device.memcpyDeviceToHost(chip3.data(), gpu_data_chip3, chip3TensorBuffSize);
|
|
|
|
VERIFY_IS_EQUAL(chip3.dimension(0), sizeDim1);
|
|
VERIFY_IS_EQUAL(chip3.dimension(1), sizeDim2);
|
|
VERIFY_IS_EQUAL(chip3.dimension(2), sizeDim4);
|
|
VERIFY_IS_EQUAL(chip3.dimension(3), sizeDim5);
|
|
|
|
for (IndexType i = 0; i < sizeDim1; ++i) {
|
|
for (IndexType j = 0; j < sizeDim2; ++j) {
|
|
for (IndexType k = 0; k < sizeDim4; ++k) {
|
|
for (IndexType l = 0; l < sizeDim5; ++l) {
|
|
VERIFY_IS_EQUAL(chip3(i,j,k,l), tensor(i,j,2l,k,l));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
array<IndexType, 4> chip4TensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim5}};
|
|
Tensor<DataType, 4, DataLayout,IndexType> chip4(chip4TensorRange);
|
|
const size_t chip4TensorBuffSize =chip4.size()*sizeof(DataType);
|
|
DataType* gpu_data_chip4 = static_cast<DataType*>(sycl_device.allocate(chip4TensorBuffSize));
|
|
TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_chip4(gpu_data_chip4, chip4TensorRange);
|
|
|
|
gpu_chip4.device(sycl_device)=gpu_tensor.chip(5l,3l);
|
|
sycl_device.memcpyDeviceToHost(chip4.data(), gpu_data_chip4, chip4TensorBuffSize);
|
|
|
|
VERIFY_IS_EQUAL(chip4.dimension(0), sizeDim1);
|
|
VERIFY_IS_EQUAL(chip4.dimension(1), sizeDim2);
|
|
VERIFY_IS_EQUAL(chip4.dimension(2), sizeDim3);
|
|
VERIFY_IS_EQUAL(chip4.dimension(3), sizeDim5);
|
|
|
|
for (IndexType i = 0; i < sizeDim1; ++i) {
|
|
for (IndexType j = 0; j < sizeDim2; ++j) {
|
|
for (IndexType k = 0; k < sizeDim3; ++k) {
|
|
for (IndexType l = 0; l < sizeDim5; ++l) {
|
|
VERIFY_IS_EQUAL(chip4(i,j,k,l), tensor(i,j,k,5l,l));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
array<IndexType, 4> chip5TensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4}};
|
|
Tensor<DataType, 4, DataLayout,IndexType> chip5(chip5TensorRange);
|
|
const size_t chip5TensorBuffSize =chip5.size()*sizeof(DataType);
|
|
DataType* gpu_data_chip5 = static_cast<DataType*>(sycl_device.allocate(chip5TensorBuffSize));
|
|
TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_chip5(gpu_data_chip5, chip5TensorRange);
|
|
|
|
gpu_chip5.device(sycl_device)=gpu_tensor.chip(7l,4l);
|
|
sycl_device.memcpyDeviceToHost(chip5.data(), gpu_data_chip5, chip5TensorBuffSize);
|
|
|
|
VERIFY_IS_EQUAL(chip5.dimension(0), sizeDim1);
|
|
VERIFY_IS_EQUAL(chip5.dimension(1), sizeDim2);
|
|
VERIFY_IS_EQUAL(chip5.dimension(2), sizeDim3);
|
|
VERIFY_IS_EQUAL(chip5.dimension(3), sizeDim4);
|
|
|
|
for (IndexType i = 0; i < sizeDim1; ++i) {
|
|
for (IndexType j = 0; j < sizeDim2; ++j) {
|
|
for (IndexType k = 0; k < sizeDim3; ++k) {
|
|
for (IndexType l = 0; l < sizeDim4; ++l) {
|
|
VERIFY_IS_EQUAL(chip5(i,j,k,l), tensor(i,j,k,l,7l));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
sycl_device.deallocate(gpu_data_tensor);
|
|
sycl_device.deallocate(gpu_data_chip1);
|
|
sycl_device.deallocate(gpu_data_chip2);
|
|
sycl_device.deallocate(gpu_data_chip3);
|
|
sycl_device.deallocate(gpu_data_chip4);
|
|
sycl_device.deallocate(gpu_data_chip5);
|
|
}
|
|
|
|
template <typename DataType, int DataLayout, typename IndexType>
|
|
static void test_chip_in_expr(const Eigen::SyclDevice& sycl_device) {
|
|
|
|
IndexType sizeDim1 = 2;
|
|
IndexType sizeDim2 = 3;
|
|
IndexType sizeDim3 = 5;
|
|
IndexType sizeDim4 = 7;
|
|
IndexType sizeDim5 = 11;
|
|
|
|
array<IndexType, 5> tensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4, sizeDim5}};
|
|
array<IndexType, 4> chip1TensorRange = {{sizeDim2, sizeDim3, sizeDim4, sizeDim5}};
|
|
|
|
Tensor<DataType, 5, DataLayout,IndexType> tensor(tensorRange);
|
|
|
|
Tensor<DataType, 4, DataLayout,IndexType> chip1(chip1TensorRange);
|
|
Tensor<DataType, 4, DataLayout,IndexType> tensor1(chip1TensorRange);
|
|
tensor.setRandom();
|
|
tensor1.setRandom();
|
|
|
|
const size_t tensorBuffSize =tensor.size()*sizeof(DataType);
|
|
const size_t chip1TensorBuffSize =chip1.size()*sizeof(DataType);
|
|
DataType* gpu_data_tensor = static_cast<DataType*>(sycl_device.allocate(tensorBuffSize));
|
|
DataType* gpu_data_chip1 = static_cast<DataType*>(sycl_device.allocate(chip1TensorBuffSize));
|
|
DataType* gpu_data_tensor1 = static_cast<DataType*>(sycl_device.allocate(chip1TensorBuffSize));
|
|
|
|
TensorMap<Tensor<DataType, 5, DataLayout,IndexType>> gpu_tensor(gpu_data_tensor, tensorRange);
|
|
TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_chip1(gpu_data_chip1, chip1TensorRange);
|
|
TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_tensor1(gpu_data_tensor1, chip1TensorRange);
|
|
|
|
|
|
sycl_device.memcpyHostToDevice(gpu_data_tensor, tensor.data(), tensorBuffSize);
|
|
sycl_device.memcpyHostToDevice(gpu_data_tensor1, tensor1.data(), chip1TensorBuffSize);
|
|
gpu_chip1.device(sycl_device)=gpu_tensor.template chip<0l>(0l) + gpu_tensor1;
|
|
sycl_device.memcpyDeviceToHost(chip1.data(), gpu_data_chip1, chip1TensorBuffSize);
|
|
|
|
for (int i = 0; i < sizeDim2; ++i) {
|
|
for (int j = 0; j < sizeDim3; ++j) {
|
|
for (int k = 0; k < sizeDim4; ++k) {
|
|
for (int l = 0; l < sizeDim5; ++l) {
|
|
float expected = tensor(0l,i,j,k,l) + tensor1(i,j,k,l);
|
|
VERIFY_IS_EQUAL(chip1(i,j,k,l), expected);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
array<IndexType, 3> chip2TensorRange = {{sizeDim2, sizeDim4, sizeDim5}};
|
|
Tensor<DataType, 3, DataLayout,IndexType> tensor2(chip2TensorRange);
|
|
Tensor<DataType, 3, DataLayout,IndexType> chip2(chip2TensorRange);
|
|
tensor2.setRandom();
|
|
const size_t chip2TensorBuffSize =tensor2.size()*sizeof(DataType);
|
|
DataType* gpu_data_tensor2 = static_cast<DataType*>(sycl_device.allocate(chip2TensorBuffSize));
|
|
DataType* gpu_data_chip2 = static_cast<DataType*>(sycl_device.allocate(chip2TensorBuffSize));
|
|
TensorMap<Tensor<DataType, 3, DataLayout,IndexType>> gpu_tensor2(gpu_data_tensor2, chip2TensorRange);
|
|
TensorMap<Tensor<DataType, 3, DataLayout,IndexType>> gpu_chip2(gpu_data_chip2, chip2TensorRange);
|
|
|
|
sycl_device.memcpyHostToDevice(gpu_data_tensor2, tensor2.data(), chip2TensorBuffSize);
|
|
gpu_chip2.device(sycl_device)=gpu_tensor.template chip<0l>(0l).template chip<1l>(2l) + gpu_tensor2;
|
|
sycl_device.memcpyDeviceToHost(chip2.data(), gpu_data_chip2, chip2TensorBuffSize);
|
|
|
|
for (int i = 0; i < sizeDim2; ++i) {
|
|
for (int j = 0; j < sizeDim4; ++j) {
|
|
for (int k = 0; k < sizeDim5; ++k) {
|
|
float expected = tensor(0l,i,2l,j,k) + tensor2(i,j,k);
|
|
VERIFY_IS_EQUAL(chip2(i,j,k), expected);
|
|
}
|
|
}
|
|
}
|
|
sycl_device.deallocate(gpu_data_tensor);
|
|
sycl_device.deallocate(gpu_data_tensor1);
|
|
sycl_device.deallocate(gpu_data_chip1);
|
|
sycl_device.deallocate(gpu_data_tensor2);
|
|
sycl_device.deallocate(gpu_data_chip2);
|
|
}
|
|
|
|
template <typename DataType, int DataLayout, typename IndexType>
|
|
static void test_chip_as_lvalue_sycl(const Eigen::SyclDevice& sycl_device)
|
|
{
|
|
|
|
IndexType sizeDim1 = 2;
|
|
IndexType sizeDim2 = 3;
|
|
IndexType sizeDim3 = 5;
|
|
IndexType sizeDim4 = 7;
|
|
IndexType sizeDim5 = 11;
|
|
|
|
array<IndexType, 5> tensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4, sizeDim5}};
|
|
array<IndexType, 4> input2TensorRange = {{sizeDim2, sizeDim3, sizeDim4, sizeDim5}};
|
|
|
|
Tensor<DataType, 5, DataLayout,IndexType> tensor(tensorRange);
|
|
Tensor<DataType, 5, DataLayout,IndexType> input1(tensorRange);
|
|
Tensor<DataType, 4, DataLayout,IndexType> input2(input2TensorRange);
|
|
input1.setRandom();
|
|
input2.setRandom();
|
|
|
|
|
|
const size_t tensorBuffSize =tensor.size()*sizeof(DataType);
|
|
const size_t input2TensorBuffSize =input2.size()*sizeof(DataType);
|
|
std::cout << tensorBuffSize << " , "<< input2TensorBuffSize << std::endl;
|
|
DataType* gpu_data_tensor = static_cast<DataType*>(sycl_device.allocate(tensorBuffSize));
|
|
DataType* gpu_data_input1 = static_cast<DataType*>(sycl_device.allocate(tensorBuffSize));
|
|
DataType* gpu_data_input2 = static_cast<DataType*>(sycl_device.allocate(input2TensorBuffSize));
|
|
|
|
TensorMap<Tensor<DataType, 5, DataLayout,IndexType>> gpu_tensor(gpu_data_tensor, tensorRange);
|
|
TensorMap<Tensor<DataType, 5, DataLayout,IndexType>> gpu_input1(gpu_data_input1, tensorRange);
|
|
TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_input2(gpu_data_input2, input2TensorRange);
|
|
|
|
sycl_device.memcpyHostToDevice(gpu_data_input1, input1.data(), tensorBuffSize);
|
|
gpu_tensor.device(sycl_device)=gpu_input1;
|
|
sycl_device.memcpyHostToDevice(gpu_data_input2, input2.data(), input2TensorBuffSize);
|
|
gpu_tensor.template chip<0l>(1l).device(sycl_device)=gpu_input2;
|
|
sycl_device.memcpyDeviceToHost(tensor.data(), gpu_data_tensor, tensorBuffSize);
|
|
|
|
for (int i = 0; i < sizeDim1; ++i) {
|
|
for (int j = 0; j < sizeDim2; ++j) {
|
|
for (int k = 0; k < sizeDim3; ++k) {
|
|
for (int l = 0; l < sizeDim4; ++l) {
|
|
for (int m = 0; m < sizeDim5; ++m) {
|
|
if (i != 1) {
|
|
VERIFY_IS_EQUAL(tensor(i,j,k,l,m), input1(i,j,k,l,m));
|
|
} else {
|
|
VERIFY_IS_EQUAL(tensor(i,j,k,l,m), input2(j,k,l,m));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
gpu_tensor.device(sycl_device)=gpu_input1;
|
|
array<IndexType, 4> input3TensorRange = {{sizeDim1, sizeDim3, sizeDim4, sizeDim5}};
|
|
Tensor<DataType, 4, DataLayout,IndexType> input3(input3TensorRange);
|
|
input3.setRandom();
|
|
|
|
const size_t input3TensorBuffSize =input3.size()*sizeof(DataType);
|
|
DataType* gpu_data_input3 = static_cast<DataType*>(sycl_device.allocate(input3TensorBuffSize));
|
|
TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_input3(gpu_data_input3, input3TensorRange);
|
|
|
|
sycl_device.memcpyHostToDevice(gpu_data_input3, input3.data(), input3TensorBuffSize);
|
|
gpu_tensor.template chip<1l>(1l).device(sycl_device)=gpu_input3;
|
|
sycl_device.memcpyDeviceToHost(tensor.data(), gpu_data_tensor, tensorBuffSize);
|
|
|
|
for (int i = 0; i < sizeDim1; ++i) {
|
|
for (int j = 0; j < sizeDim2; ++j) {
|
|
for (int k = 0; k <sizeDim3; ++k) {
|
|
for (int l = 0; l < sizeDim4; ++l) {
|
|
for (int m = 0; m < sizeDim5; ++m) {
|
|
if (j != 1) {
|
|
VERIFY_IS_EQUAL(tensor(i,j,k,l,m), input1(i,j,k,l,m));
|
|
} else {
|
|
VERIFY_IS_EQUAL(tensor(i,j,k,l,m), input3(i,k,l,m));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
gpu_tensor.device(sycl_device)=gpu_input1;
|
|
array<IndexType, 4> input4TensorRange = {{sizeDim1, sizeDim2, sizeDim4, sizeDim5}};
|
|
Tensor<DataType, 4, DataLayout,IndexType> input4(input4TensorRange);
|
|
input4.setRandom();
|
|
|
|
const size_t input4TensorBuffSize =input4.size()*sizeof(DataType);
|
|
DataType* gpu_data_input4 = static_cast<DataType*>(sycl_device.allocate(input4TensorBuffSize));
|
|
TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_input4(gpu_data_input4, input4TensorRange);
|
|
|
|
sycl_device.memcpyHostToDevice(gpu_data_input4, input4.data(), input4TensorBuffSize);
|
|
gpu_tensor.template chip<2l>(3l).device(sycl_device)=gpu_input4;
|
|
sycl_device.memcpyDeviceToHost(tensor.data(), gpu_data_tensor, tensorBuffSize);
|
|
|
|
for (int i = 0; i < sizeDim1; ++i) {
|
|
for (int j = 0; j < sizeDim2; ++j) {
|
|
for (int k = 0; k <sizeDim3; ++k) {
|
|
for (int l = 0; l < sizeDim4; ++l) {
|
|
for (int m = 0; m < sizeDim5; ++m) {
|
|
if (k != 3) {
|
|
VERIFY_IS_EQUAL(tensor(i,j,k,l,m), input1(i,j,k,l,m));
|
|
} else {
|
|
VERIFY_IS_EQUAL(tensor(i,j,k,l,m), input4(i,j,l,m));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
gpu_tensor.device(sycl_device)=gpu_input1;
|
|
array<IndexType, 4> input5TensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim5}};
|
|
Tensor<DataType, 4, DataLayout,IndexType> input5(input5TensorRange);
|
|
input5.setRandom();
|
|
|
|
const size_t input5TensorBuffSize =input5.size()*sizeof(DataType);
|
|
DataType* gpu_data_input5 = static_cast<DataType*>(sycl_device.allocate(input5TensorBuffSize));
|
|
TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_input5(gpu_data_input5, input5TensorRange);
|
|
|
|
sycl_device.memcpyHostToDevice(gpu_data_input5, input5.data(), input5TensorBuffSize);
|
|
gpu_tensor.template chip<3l>(4l).device(sycl_device)=gpu_input5;
|
|
sycl_device.memcpyDeviceToHost(tensor.data(), gpu_data_tensor, tensorBuffSize);
|
|
|
|
for (int i = 0; i < sizeDim1; ++i) {
|
|
for (int j = 0; j < sizeDim2; ++j) {
|
|
for (int k = 0; k <sizeDim3; ++k) {
|
|
for (int l = 0; l < sizeDim4; ++l) {
|
|
for (int m = 0; m < sizeDim5; ++m) {
|
|
if (l != 4) {
|
|
VERIFY_IS_EQUAL(tensor(i,j,k,l,m), input1(i,j,k,l,m));
|
|
} else {
|
|
VERIFY_IS_EQUAL(tensor(i,j,k,l,m), input5(i,j,k,m));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
gpu_tensor.device(sycl_device)=gpu_input1;
|
|
array<IndexType, 4> input6TensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4}};
|
|
Tensor<DataType, 4, DataLayout,IndexType> input6(input6TensorRange);
|
|
input6.setRandom();
|
|
|
|
const size_t input6TensorBuffSize =input6.size()*sizeof(DataType);
|
|
DataType* gpu_data_input6 = static_cast<DataType*>(sycl_device.allocate(input6TensorBuffSize));
|
|
TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_input6(gpu_data_input6, input6TensorRange);
|
|
|
|
sycl_device.memcpyHostToDevice(gpu_data_input6, input6.data(), input6TensorBuffSize);
|
|
gpu_tensor.template chip<4l>(5l).device(sycl_device)=gpu_input6;
|
|
sycl_device.memcpyDeviceToHost(tensor.data(), gpu_data_tensor, tensorBuffSize);
|
|
|
|
for (int i = 0; i < sizeDim1; ++i) {
|
|
for (int j = 0; j < sizeDim2; ++j) {
|
|
for (int k = 0; k <sizeDim3; ++k) {
|
|
for (int l = 0; l < sizeDim4; ++l) {
|
|
for (int m = 0; m < sizeDim5; ++m) {
|
|
if (m != 5) {
|
|
VERIFY_IS_EQUAL(tensor(i,j,k,l,m), input1(i,j,k,l,m));
|
|
} else {
|
|
VERIFY_IS_EQUAL(tensor(i,j,k,l,m), input6(i,j,k,l));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
gpu_tensor.device(sycl_device)=gpu_input1;
|
|
Tensor<DataType, 5, DataLayout,IndexType> input7(tensorRange);
|
|
input7.setRandom();
|
|
|
|
DataType* gpu_data_input7 = static_cast<DataType*>(sycl_device.allocate(tensorBuffSize));
|
|
TensorMap<Tensor<DataType, 5, DataLayout,IndexType>> gpu_input7(gpu_data_input7, tensorRange);
|
|
|
|
sycl_device.memcpyHostToDevice(gpu_data_input7, input7.data(), tensorBuffSize);
|
|
gpu_tensor.chip(0l,0l).device(sycl_device)=gpu_input7.chip(0l,0l);
|
|
sycl_device.memcpyDeviceToHost(tensor.data(), gpu_data_tensor, tensorBuffSize);
|
|
|
|
for (int i = 0; i < sizeDim1; ++i) {
|
|
for (int j = 0; j < sizeDim2; ++j) {
|
|
for (int k = 0; k <sizeDim3; ++k) {
|
|
for (int l = 0; l < sizeDim4; ++l) {
|
|
for (int m = 0; m < sizeDim5; ++m) {
|
|
if (i != 0) {
|
|
VERIFY_IS_EQUAL(tensor(i,j,k,l,m), input1(i,j,k,l,m));
|
|
} else {
|
|
VERIFY_IS_EQUAL(tensor(i,j,k,l,m), input7(i,j,k,l,m));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
sycl_device.deallocate(gpu_data_tensor);
|
|
sycl_device.deallocate(gpu_data_input1);
|
|
sycl_device.deallocate(gpu_data_input2);
|
|
sycl_device.deallocate(gpu_data_input3);
|
|
sycl_device.deallocate(gpu_data_input4);
|
|
sycl_device.deallocate(gpu_data_input5);
|
|
sycl_device.deallocate(gpu_data_input6);
|
|
sycl_device.deallocate(gpu_data_input7);
|
|
|
|
}
|
|
|
|
template<typename DataType, typename dev_Selector> void sycl_chipping_test_per_device(dev_Selector s){
|
|
QueueInterface queueInterface(s);
|
|
auto sycl_device = Eigen::SyclDevice(&queueInterface);
|
|
/* test_static_chip_sycl<DataType, RowMajor, int64_t>(sycl_device);
|
|
test_static_chip_sycl<DataType, ColMajor, int64_t>(sycl_device);
|
|
test_dynamic_chip_sycl<DataType, RowMajor, int64_t>(sycl_device);
|
|
test_dynamic_chip_sycl<DataType, ColMajor, int64_t>(sycl_device);
|
|
test_chip_in_expr<DataType, RowMajor, int64_t>(sycl_device);
|
|
test_chip_in_expr<DataType, ColMajor, int64_t>(sycl_device);*/
|
|
test_chip_as_lvalue_sycl<DataType, RowMajor, int64_t>(sycl_device);
|
|
// test_chip_as_lvalue_sycl<DataType, ColMajor, int64_t>(sycl_device);
|
|
}
|
|
EIGEN_DECLARE_TEST(cxx11_tensor_chipping_sycl)
|
|
{
|
|
for (const auto& device :Eigen::get_sycl_supported_devices()) {
|
|
CALL_SUBTEST(sycl_chipping_test_per_device<float>(device));
|
|
}
|
|
}
|