mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-12 14:25:16 +08:00
286 lines
10 KiB
C++
286 lines
10 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "common.h"
|
|
|
|
/** ZHEMV performs the matrix-vector operation
|
|
*
|
|
* y := alpha*A*x + beta*y,
|
|
*
|
|
* where alpha and beta are scalars, x and y are n element vectors and
|
|
* A is an n by n hermitian matrix.
|
|
*/
|
|
int EIGEN_BLAS_FUNC(hemv)(char *uplo, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *px, int *incx, RealScalar *pbeta, RealScalar *py, int *incy)
|
|
{
|
|
Scalar* a = reinterpret_cast<Scalar*>(pa);
|
|
Scalar* x = reinterpret_cast<Scalar*>(px);
|
|
Scalar* y = reinterpret_cast<Scalar*>(py);
|
|
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
|
|
Scalar beta = *reinterpret_cast<Scalar*>(pbeta);
|
|
|
|
// check arguments
|
|
int info = 0;
|
|
if(UPLO(*uplo)==INVALID) info = 1;
|
|
else if(*n<0) info = 2;
|
|
else if(*lda<std::max(1,*n)) info = 5;
|
|
else if(*incx==0) info = 7;
|
|
else if(*incy==0) info = 10;
|
|
if(info)
|
|
return xerbla_(SCALAR_SUFFIX_UP"HEMV ",&info,6);
|
|
|
|
if(*n==0)
|
|
return 1;
|
|
|
|
Scalar* actual_x = get_compact_vector(x,*n,*incx);
|
|
Scalar* actual_y = get_compact_vector(y,*n,*incy);
|
|
|
|
if(beta!=Scalar(1))
|
|
{
|
|
if(beta==Scalar(0)) vector(actual_y, *n).setZero();
|
|
else vector(actual_y, *n) *= beta;
|
|
}
|
|
|
|
if(alpha!=Scalar(0))
|
|
{
|
|
// TODO performs a direct call to the underlying implementation function
|
|
if(UPLO(*uplo)==UP) vector(actual_y,*n).noalias() += matrix(a,*n,*n,*lda).selfadjointView<Upper>() * (alpha * vector(actual_x,*n));
|
|
else if(UPLO(*uplo)==LO) vector(actual_y,*n).noalias() += matrix(a,*n,*n,*lda).selfadjointView<Lower>() * (alpha * vector(actual_x,*n));
|
|
}
|
|
|
|
if(actual_x!=x) delete[] actual_x;
|
|
if(actual_y!=y) delete[] copy_back(actual_y,y,*n,*incy);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/** ZHBMV performs the matrix-vector operation
|
|
*
|
|
* y := alpha*A*x + beta*y,
|
|
*
|
|
* where alpha and beta are scalars, x and y are n element vectors and
|
|
* A is an n by n hermitian band matrix, with k super-diagonals.
|
|
*/
|
|
// int EIGEN_BLAS_FUNC(hbmv)(char *uplo, int *n, int *k, RealScalar *alpha, RealScalar *a, int *lda,
|
|
// RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy)
|
|
// {
|
|
// return 1;
|
|
// }
|
|
|
|
/** ZHPMV performs the matrix-vector operation
|
|
*
|
|
* y := alpha*A*x + beta*y,
|
|
*
|
|
* where alpha and beta are scalars, x and y are n element vectors and
|
|
* A is an n by n hermitian matrix, supplied in packed form.
|
|
*/
|
|
// int EIGEN_BLAS_FUNC(hpmv)(char *uplo, int *n, RealScalar *alpha, RealScalar *ap, RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy)
|
|
// {
|
|
// return 1;
|
|
// }
|
|
|
|
/** ZHPR performs the hermitian rank 1 operation
|
|
*
|
|
* A := alpha*x*conjg( x' ) + A,
|
|
*
|
|
* where alpha is a real scalar, x is an n element vector and A is an
|
|
* n by n hermitian matrix, supplied in packed form.
|
|
*/
|
|
// int EIGEN_BLAS_FUNC(hpr)(char *uplo, int *n, RealScalar *alpha, RealScalar *x, int *incx, RealScalar *ap)
|
|
// {
|
|
// return 1;
|
|
// }
|
|
|
|
/** ZHPR2 performs the hermitian rank 2 operation
|
|
*
|
|
* A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A,
|
|
*
|
|
* where alpha is a scalar, x and y are n element vectors and A is an
|
|
* n by n hermitian matrix, supplied in packed form.
|
|
*/
|
|
// int EIGEN_BLAS_FUNC(hpr2)(char *uplo, int *n, RealScalar *palpha, RealScalar *x, int *incx, RealScalar *y, int *incy, RealScalar *ap)
|
|
// {
|
|
// return 1;
|
|
// }
|
|
|
|
/** ZHER performs the hermitian rank 1 operation
|
|
*
|
|
* A := alpha*x*conjg( x' ) + A,
|
|
*
|
|
* where alpha is a real scalar, x is an n element vector and A is an
|
|
* n by n hermitian matrix.
|
|
*/
|
|
int EIGEN_BLAS_FUNC(her)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *pa, int *lda)
|
|
{
|
|
Scalar* x = reinterpret_cast<Scalar*>(px);
|
|
Scalar* a = reinterpret_cast<Scalar*>(pa);
|
|
RealScalar alpha = *reinterpret_cast<RealScalar*>(palpha);
|
|
|
|
int info = 0;
|
|
if(UPLO(*uplo)==INVALID) info = 1;
|
|
else if(*n<0) info = 2;
|
|
else if(*incx==0) info = 5;
|
|
else if(*lda<std::max(1,*n)) info = 7;
|
|
if(info)
|
|
return xerbla_(SCALAR_SUFFIX_UP"HER ",&info,6);
|
|
|
|
if(alpha==RealScalar(0))
|
|
return 1;
|
|
|
|
Scalar* x_cpy = get_compact_vector(x, *n, *incx);
|
|
|
|
// TODO perform direct calls to underlying implementation
|
|
// if(UPLO(*uplo)==LO) matrix(a,*n,*n,*lda).selfadjointView<Lower>().rankUpdate(vector(x_cpy,*n), alpha);
|
|
// else if(UPLO(*uplo)==UP) matrix(a,*n,*n,*lda).selfadjointView<Upper>().rankUpdate(vector(x_cpy,*n), alpha);
|
|
|
|
if(UPLO(*uplo)==LO)
|
|
for(int j=0;j<*n;++j)
|
|
matrix(a,*n,*n,*lda).col(j).tail(*n-j) += alpha * internal::conj(x_cpy[j]) * vector(x_cpy+j,*n-j);
|
|
else
|
|
for(int j=0;j<*n;++j)
|
|
matrix(a,*n,*n,*lda).col(j).head(j+1) += alpha * internal::conj(x_cpy[j]) * vector(x_cpy,j+1);
|
|
|
|
matrix(a,*n,*n,*lda).diagonal().imag().setZero();
|
|
|
|
if(x_cpy!=x) delete[] x_cpy;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/** ZHER2 performs the hermitian rank 2 operation
|
|
*
|
|
* A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A,
|
|
*
|
|
* where alpha is a scalar, x and y are n element vectors and A is an n
|
|
* by n hermitian matrix.
|
|
*/
|
|
int EIGEN_BLAS_FUNC(her2)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda)
|
|
{
|
|
Scalar* x = reinterpret_cast<Scalar*>(px);
|
|
Scalar* y = reinterpret_cast<Scalar*>(py);
|
|
Scalar* a = reinterpret_cast<Scalar*>(pa);
|
|
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
|
|
|
|
int info = 0;
|
|
if(UPLO(*uplo)==INVALID) info = 1;
|
|
else if(*n<0) info = 2;
|
|
else if(*incx==0) info = 5;
|
|
else if(*incy==0) info = 7;
|
|
else if(*lda<std::max(1,*n)) info = 9;
|
|
if(info)
|
|
return xerbla_(SCALAR_SUFFIX_UP"HER2 ",&info,6);
|
|
|
|
if(alpha==Scalar(0))
|
|
return 1;
|
|
|
|
Scalar* x_cpy = get_compact_vector(x, *n, *incx);
|
|
Scalar* y_cpy = get_compact_vector(y, *n, *incy);
|
|
|
|
// TODO perform direct calls to underlying implementation
|
|
if(UPLO(*uplo)==LO) matrix(a,*n,*n,*lda).selfadjointView<Lower>().rankUpdate(vector(x_cpy,*n),vector(y_cpy,*n),alpha);
|
|
else if(UPLO(*uplo)==UP) matrix(a,*n,*n,*lda).selfadjointView<Upper>().rankUpdate(vector(x_cpy,*n),vector(y_cpy,*n),alpha);
|
|
|
|
matrix(a,*n,*n,*lda).diagonal().imag().setZero();
|
|
|
|
if(x_cpy!=x) delete[] x_cpy;
|
|
if(y_cpy!=y) delete[] y_cpy;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/** ZGERU performs the rank 1 operation
|
|
*
|
|
* A := alpha*x*y' + A,
|
|
*
|
|
* where alpha is a scalar, x is an m element vector, y is an n element
|
|
* vector and A is an m by n matrix.
|
|
*/
|
|
int EIGEN_BLAS_FUNC(geru)(int *m, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda)
|
|
{
|
|
Scalar* x = reinterpret_cast<Scalar*>(px);
|
|
Scalar* y = reinterpret_cast<Scalar*>(py);
|
|
Scalar* a = reinterpret_cast<Scalar*>(pa);
|
|
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
|
|
|
|
int info = 0;
|
|
if(*m<0) info = 1;
|
|
else if(*n<0) info = 2;
|
|
else if(*incx==0) info = 5;
|
|
else if(*incy==0) info = 7;
|
|
else if(*lda<std::max(1,*m)) info = 9;
|
|
if(info)
|
|
return xerbla_(SCALAR_SUFFIX_UP"GERU ",&info,6);
|
|
|
|
if(alpha==Scalar(0))
|
|
return 1;
|
|
|
|
Scalar* x_cpy = get_compact_vector(x,*m,*incx);
|
|
Scalar* y_cpy = get_compact_vector(y,*n,*incy);
|
|
|
|
// TODO perform direct calls to underlying implementation
|
|
matrix(a,*m,*n,*lda) += alpha * vector(x_cpy,*m) * vector(y_cpy,*n).transpose();
|
|
|
|
if(x_cpy!=x) delete[] x_cpy;
|
|
if(y_cpy!=y) delete[] y_cpy;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/** ZGERC performs the rank 1 operation
|
|
*
|
|
* A := alpha*x*conjg( y' ) + A,
|
|
*
|
|
* where alpha is a scalar, x is an m element vector, y is an n element
|
|
* vector and A is an m by n matrix.
|
|
*/
|
|
int EIGEN_BLAS_FUNC(gerc)(int *m, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda)
|
|
{
|
|
Scalar* x = reinterpret_cast<Scalar*>(px);
|
|
Scalar* y = reinterpret_cast<Scalar*>(py);
|
|
Scalar* a = reinterpret_cast<Scalar*>(pa);
|
|
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
|
|
|
|
int info = 0;
|
|
if(*m<0) info = 1;
|
|
else if(*n<0) info = 2;
|
|
else if(*incx==0) info = 5;
|
|
else if(*incy==0) info = 7;
|
|
else if(*lda<std::max(1,*m)) info = 9;
|
|
if(info)
|
|
return xerbla_(SCALAR_SUFFIX_UP"GERC ",&info,6);
|
|
|
|
if(alpha==Scalar(0))
|
|
return 1;
|
|
|
|
Scalar* x_cpy = get_compact_vector(x,*m,*incx);
|
|
Scalar* y_cpy = get_compact_vector(y,*n,*incy);
|
|
|
|
// TODO perform direct calls to underlying implementation
|
|
matrix(a,*m,*n,*lda) += alpha * vector(x_cpy,*m) * vector(y_cpy,*n).adjoint();
|
|
|
|
if(x_cpy!=x) delete[] x_cpy;
|
|
if(y_cpy!=y) delete[] y_cpy;
|
|
|
|
return 1;
|
|
}
|