eigen/blas/common.h
2016-04-11 17:13:01 +02:00

164 lines
4.3 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_BLAS_COMMON_H
#define EIGEN_BLAS_COMMON_H
#include "../Eigen/Core"
#include "../Eigen/Jacobi"
#include <complex>
#ifndef SCALAR
#error the token SCALAR must be defined to compile this file
#endif
#include "../Eigen/src/misc/blas.h"
#define NOTR 0
#define TR 1
#define ADJ 2
#define LEFT 0
#define RIGHT 1
#define UP 0
#define LO 1
#define NUNIT 0
#define UNIT 1
#define INVALID 0xff
#define OP(X) ( ((X)=='N' || (X)=='n') ? NOTR \
: ((X)=='T' || (X)=='t') ? TR \
: ((X)=='C' || (X)=='c') ? ADJ \
: INVALID)
#define SIDE(X) ( ((X)=='L' || (X)=='l') ? LEFT \
: ((X)=='R' || (X)=='r') ? RIGHT \
: INVALID)
#define UPLO(X) ( ((X)=='U' || (X)=='u') ? UP \
: ((X)=='L' || (X)=='l') ? LO \
: INVALID)
#define DIAG(X) ( ((X)=='N' || (X)=='n') ? NUNIT \
: ((X)=='U' || (X)=='u') ? UNIT \
: INVALID)
inline bool check_op(const char* op)
{
return OP(*op)!=0xff;
}
inline bool check_side(const char* side)
{
return SIDE(*side)!=0xff;
}
inline bool check_uplo(const char* uplo)
{
return UPLO(*uplo)!=0xff;
}
namespace Eigen {
#include "BandTriangularSolver.h"
#include "GeneralRank1Update.h"
#include "PackedSelfadjointProduct.h"
#include "PackedTriangularMatrixVector.h"
#include "PackedTriangularSolverVector.h"
#include "Rank2Update.h"
}
using namespace Eigen;
typedef SCALAR Scalar;
typedef NumTraits<Scalar>::Real RealScalar;
typedef std::complex<RealScalar> Complex;
enum
{
IsComplex = Eigen::NumTraits<SCALAR>::IsComplex,
Conj = IsComplex
};
typedef Matrix<Scalar,Dynamic,Dynamic,ColMajor> PlainMatrixType;
typedef Map<Matrix<Scalar,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> > MatrixType;
typedef Map<const Matrix<Scalar,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> > ConstMatrixType;
typedef Map<Matrix<Scalar,Dynamic,1>, 0, InnerStride<Dynamic> > StridedVectorType;
typedef Map<Matrix<Scalar,Dynamic,1> > CompactVectorType;
template<typename T>
Map<Matrix<T,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> >
matrix(T* data, int rows, int cols, int stride)
{
return Map<Matrix<T,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> >(data, rows, cols, OuterStride<>(stride));
}
template<typename T>
Map<const Matrix<T,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> >
matrix(const T* data, int rows, int cols, int stride)
{
return Map<const Matrix<T,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> >(data, rows, cols, OuterStride<>(stride));
}
template<typename T>
Map<Matrix<T,Dynamic,1>, 0, InnerStride<Dynamic> > make_vector(T* data, int size, int incr)
{
return Map<Matrix<T,Dynamic,1>, 0, InnerStride<Dynamic> >(data, size, InnerStride<Dynamic>(incr));
}
template<typename T>
Map<const Matrix<T,Dynamic,1>, 0, InnerStride<Dynamic> > make_vector(const T* data, int size, int incr)
{
return Map<const Matrix<T,Dynamic,1>, 0, InnerStride<Dynamic> >(data, size, InnerStride<Dynamic>(incr));
}
template<typename T>
Map<Matrix<T,Dynamic,1> > make_vector(T* data, int size)
{
return Map<Matrix<T,Dynamic,1> >(data, size);
}
template<typename T>
Map<const Matrix<T,Dynamic,1> > make_vector(const T* data, int size)
{
return Map<const Matrix<T,Dynamic,1> >(data, size);
}
template<typename T>
T* get_compact_vector(T* x, int n, int incx)
{
if(incx==1)
return x;
typename Eigen::internal::remove_const<T>::type* ret = new Scalar[n];
if(incx<0) make_vector(ret,n) = make_vector(x,n,-incx).reverse();
else make_vector(ret,n) = make_vector(x,n, incx);
return ret;
}
template<typename T>
T* copy_back(T* x_cpy, T* x, int n, int incx)
{
if(x_cpy==x)
return 0;
if(incx<0) make_vector(x,n,-incx).reverse() = make_vector(x_cpy,n);
else make_vector(x,n, incx) = make_vector(x_cpy,n);
return x_cpy;
}
#define EIGEN_BLAS_FUNC(X) EIGEN_CAT(SCALAR_SUFFIX,X##_)
#endif // EIGEN_BLAS_COMMON_H