mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-06 14:14:46 +08:00
204 lines
7.3 KiB
Plaintext
204 lines
7.3 KiB
Plaintext
// This file is part of a joint effort between Eigen, a lightweight C++ template library
|
|
// for linear algebra, and MPFR C++, a C++ interface to MPFR library (http://www.holoborodko.com/pavel/)
|
|
//
|
|
// Copyright (C) 2010-2012 Pavel Holoborodko <pavel@holoborodko.com>
|
|
// Copyright (C) 2010 Konstantin Holoborodko <konstantin@holoborodko.com>
|
|
// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_MPREALSUPPORT_MODULE_H
|
|
#define EIGEN_MPREALSUPPORT_MODULE_H
|
|
|
|
#include <Eigen/Core>
|
|
#include <mpreal.h>
|
|
|
|
namespace Eigen {
|
|
|
|
/**
|
|
* \defgroup MPRealSupport_Module MPFRC++ Support module
|
|
* \code
|
|
* #include <Eigen/MPRealSupport>
|
|
* \endcode
|
|
*
|
|
* This module provides support for multi precision floating point numbers
|
|
* via the <a href="http://www.holoborodko.com/pavel/mpfr">MPFR C++</a>
|
|
* library which itself is built upon <a href="http://www.mpfr.org/">MPFR</a>/<a href="http://gmplib.org/">GMP</a>.
|
|
*
|
|
* You can find a copy of MPFR C++ that is known to be compatible in the unsupported/test/mpreal folder.
|
|
*
|
|
* Here is an example:
|
|
*
|
|
\code
|
|
#include <iostream>
|
|
#include <Eigen/MPRealSupport>
|
|
#include <Eigen/LU>
|
|
using namespace mpfr;
|
|
using namespace Eigen;
|
|
int main()
|
|
{
|
|
// set precision to 256 bits (double has only 53 bits)
|
|
mpreal::set_default_prec(256);
|
|
// Declare matrix and vector types with multi-precision scalar type
|
|
typedef Matrix<mpreal,Dynamic,Dynamic> MatrixXmp;
|
|
typedef Matrix<mpreal,Dynamic,1> VectorXmp;
|
|
|
|
MatrixXmp A = MatrixXmp::Random(100,100);
|
|
VectorXmp b = VectorXmp::Random(100);
|
|
|
|
// Solve Ax=b using LU
|
|
VectorXmp x = A.lu().solve(b);
|
|
std::cout << "relative error: " << (A*x - b).norm() / b.norm() << std::endl;
|
|
return 0;
|
|
}
|
|
\endcode
|
|
*
|
|
*/
|
|
|
|
template<> struct NumTraits<mpfr::mpreal>
|
|
: GenericNumTraits<mpfr::mpreal>
|
|
{
|
|
enum {
|
|
IsInteger = 0,
|
|
IsSigned = 1,
|
|
IsComplex = 0,
|
|
RequireInitialization = 1,
|
|
ReadCost = 10,
|
|
AddCost = 10,
|
|
MulCost = 40
|
|
};
|
|
|
|
typedef mpfr::mpreal Real;
|
|
typedef mpfr::mpreal NonInteger;
|
|
|
|
inline static Real highest (long Precision = mpfr::mpreal::get_default_prec()) { return mpfr::maxval(Precision); }
|
|
inline static Real lowest (long Precision = mpfr::mpreal::get_default_prec()) { return -mpfr::maxval(Precision); }
|
|
|
|
// Constants
|
|
inline static Real Pi (long Precision = mpfr::mpreal::get_default_prec()) { return mpfr::const_pi(Precision); }
|
|
inline static Real Euler (long Precision = mpfr::mpreal::get_default_prec()) { return mpfr::const_euler(Precision); }
|
|
inline static Real Log2 (long Precision = mpfr::mpreal::get_default_prec()) { return mpfr::const_log2(Precision); }
|
|
inline static Real Catalan (long Precision = mpfr::mpreal::get_default_prec()) { return mpfr::const_catalan(Precision); }
|
|
|
|
inline static Real epsilon (long Precision = mpfr::mpreal::get_default_prec()) { return mpfr::machine_epsilon(Precision); }
|
|
inline static Real epsilon (const Real& x) { return mpfr::machine_epsilon(x); }
|
|
|
|
inline static Real dummy_precision()
|
|
{
|
|
unsigned int weak_prec = ((mpfr::mpreal::get_default_prec()-1) * 90) / 100;
|
|
return mpfr::machine_epsilon(weak_prec);
|
|
}
|
|
};
|
|
|
|
namespace internal {
|
|
|
|
template<> inline mpfr::mpreal random<mpfr::mpreal>()
|
|
{
|
|
return mpfr::random();
|
|
}
|
|
|
|
template<> inline mpfr::mpreal random<mpfr::mpreal>(const mpfr::mpreal& a, const mpfr::mpreal& b)
|
|
{
|
|
return a + (b-a) * random<mpfr::mpreal>();
|
|
}
|
|
|
|
inline bool isMuchSmallerThan(const mpfr::mpreal& a, const mpfr::mpreal& b, const mpfr::mpreal& eps)
|
|
{
|
|
return mpfr::abs(a) <= mpfr::abs(b) * eps;
|
|
}
|
|
|
|
inline bool isApprox(const mpfr::mpreal& a, const mpfr::mpreal& b, const mpfr::mpreal& eps)
|
|
{
|
|
return mpfr::isEqualFuzzy(a,b,eps);
|
|
}
|
|
|
|
inline bool isApproxOrLessThan(const mpfr::mpreal& a, const mpfr::mpreal& b, const mpfr::mpreal& eps)
|
|
{
|
|
return a <= b || mpfr::isEqualFuzzy(a,b,eps);
|
|
}
|
|
|
|
template<> inline long double cast<mpfr::mpreal,long double>(const mpfr::mpreal& x)
|
|
{ return x.toLDouble(); }
|
|
|
|
template<> inline double cast<mpfr::mpreal,double>(const mpfr::mpreal& x)
|
|
{ return x.toDouble(); }
|
|
|
|
template<> inline long cast<mpfr::mpreal,long>(const mpfr::mpreal& x)
|
|
{ return x.toLong(); }
|
|
|
|
template<> inline int cast<mpfr::mpreal,int>(const mpfr::mpreal& x)
|
|
{ return int(x.toLong()); }
|
|
|
|
// Specialize GEBP kernel and traits for mpreal (no need for peeling, nor complicated stuff)
|
|
// This also permits to directly call mpfr's routines and avoid many temporaries produced by mpreal
|
|
template<>
|
|
class gebp_traits<mpfr::mpreal, mpfr::mpreal, false, false>
|
|
{
|
|
public:
|
|
typedef mpfr::mpreal ResScalar;
|
|
enum {
|
|
nr = 2, // must be 2 for proper packing...
|
|
mr = 1,
|
|
WorkSpaceFactor = nr,
|
|
LhsProgress = 1,
|
|
RhsProgress = 1
|
|
};
|
|
};
|
|
|
|
template<typename Index, int mr, int nr, bool ConjugateLhs, bool ConjugateRhs>
|
|
struct gebp_kernel<mpfr::mpreal,mpfr::mpreal,Index,mr,nr,ConjugateLhs,ConjugateRhs>
|
|
{
|
|
typedef mpfr::mpreal mpreal;
|
|
|
|
EIGEN_DONT_INLINE
|
|
void operator()(mpreal* res, Index resStride, const mpreal* blockA, const mpreal* blockB, Index rows, Index depth, Index cols, mpreal alpha,
|
|
Index strideA=-1, Index strideB=-1, Index offsetA=0, Index offsetB=0, mpreal* /*unpackedB*/ = 0)
|
|
{
|
|
mpreal acc1, acc2, tmp;
|
|
|
|
if(strideA==-1) strideA = depth;
|
|
if(strideB==-1) strideB = depth;
|
|
|
|
for(Index j=0; j<cols; j+=nr)
|
|
{
|
|
Index actual_nr = (std::min<Index>)(nr,cols-j);
|
|
mpreal *C1 = res + j*resStride;
|
|
mpreal *C2 = res + (j+1)*resStride;
|
|
for(Index i=0; i<rows; i++)
|
|
{
|
|
mpreal *B = const_cast<mpreal*>(blockB) + j*strideB + offsetB*actual_nr;
|
|
mpreal *A = const_cast<mpreal*>(blockA) + i*strideA + offsetA;
|
|
acc1 = 0;
|
|
acc2 = 0;
|
|
for(Index k=0; k<depth; k++)
|
|
{
|
|
mpfr_mul(tmp.mpfr_ptr(), A[k].mpfr_ptr(), B[0].mpfr_ptr(), mpreal::get_default_rnd());
|
|
mpfr_add(acc1.mpfr_ptr(), acc1.mpfr_ptr(), tmp.mpfr_ptr(), mpreal::get_default_rnd());
|
|
|
|
if(actual_nr==2) {
|
|
mpfr_mul(tmp.mpfr_ptr(), A[k].mpfr_ptr(), B[1].mpfr_ptr(), mpreal::get_default_rnd());
|
|
mpfr_add(acc2.mpfr_ptr(), acc2.mpfr_ptr(), tmp.mpfr_ptr(), mpreal::get_default_rnd());
|
|
}
|
|
|
|
B+=actual_nr;
|
|
}
|
|
|
|
mpfr_mul(acc1.mpfr_ptr(), acc1.mpfr_ptr(), alpha.mpfr_ptr(), mpreal::get_default_rnd());
|
|
mpfr_add(C1[i].mpfr_ptr(), C1[i].mpfr_ptr(), acc1.mpfr_ptr(), mpreal::get_default_rnd());
|
|
|
|
if(actual_nr==2) {
|
|
mpfr_mul(acc2.mpfr_ptr(), acc2.mpfr_ptr(), alpha.mpfr_ptr(), mpreal::get_default_rnd());
|
|
mpfr_add(C2[i].mpfr_ptr(), C2[i].mpfr_ptr(), acc2.mpfr_ptr(), mpreal::get_default_rnd());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
} // end namespace internal
|
|
}
|
|
|
|
#endif // EIGEN_MPREALSUPPORT_MODULE_H
|