eigen/test/basicstuff.cpp
Benoit Jacob 7c38475291 -add Ones, DiagonalMatrix, DiagonalCoeffs
-expand and improve unit-tests
-various renaming and improvements
2007-12-15 18:16:30 +00:00

175 lines
7.3 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2006-2007 Benoit Jacob <jacob@math.jussieu.fr>
//
// Eigen is free software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the Free Software
// Foundation; either version 2 or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
// details.
//
// You should have received a copy of the GNU General Public License along
// with Eigen; if not, write to the Free Software Foundation, Inc., 51
// Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
//
// As a special exception, if other files instantiate templates or use macros
// or functions from this file, or you compile this file and link it
// with other works to produce a work based on this file, this file does not
// by itself cause the resulting work to be covered by the GNU General Public
// License. This exception does not invalidate any other reasons why a work
// based on this file might be covered by the GNU General Public License.
#include "main.h"
namespace Eigen {
template<typename MatrixType> void basicStuff(const MatrixType& m)
{
/* this test covers the following files:
1) Explicitly (see comments below):
Random.h Zero.h Identity.h Fuzzy.h Sum.h Difference.h
Opposite.h Product.h ScalarMultiple.h Map.h
2) Implicitly (the core stuff):
MatrixBase.h Matrix.h MatrixStorage.h CopyHelper.h MatrixRef.h
NumTraits.h Util.h
*/
typedef typename MatrixType::Scalar Scalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
int rows = m.rows();
int cols = m.cols();
// this test relies a lot on Random.h, and there's not much more that we can do
// to test it, hence I consider that we will have tested Random.h
MatrixType m1 = MatrixType::random(rows, cols),
m2 = MatrixType::random(rows, cols),
m3(rows, cols),
mzero = MatrixType::zero(rows, cols),
identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
::identity(rows),
square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
::random(rows, rows);
VectorType v1 = VectorType::random(rows),
v2 = VectorType::random(rows),
vzero = VectorType::zero(rows);
Scalar s1 = random<Scalar>(),
s2 = random<Scalar>();
int r = random<int>(0, rows-1),
c = random<int>(0, cols-1);
// test Fuzzy.h and Zero.h.
VERIFY_IS_APPROX( v1, v1);
VERIFY_IS_NOT_APPROX( v1, 2*v1);
VERIFY_IS_MUCH_SMALLER_THAN( vzero, v1);
if(NumTraits<Scalar>::HasFloatingPoint)
VERIFY_IS_MUCH_SMALLER_THAN( vzero, v1.norm());
VERIFY_IS_NOT_MUCH_SMALLER_THAN(v1, v1);
VERIFY_IS_APPROX( vzero, v1-v1);
VERIFY_IS_APPROX( m1, m1);
VERIFY_IS_NOT_APPROX( m1, 2*m1);
VERIFY_IS_MUCH_SMALLER_THAN( mzero, m1);
VERIFY_IS_NOT_MUCH_SMALLER_THAN(m1, m1);
VERIFY_IS_APPROX( mzero, m1-m1);
// always test operator() on each read-only expression class,
// in order to check const-qualifiers.
// indeed, if an expression class (here Zero) is meant to be read-only,
// hence has no _write() method, the corresponding MatrixBase method (here zero())
// should return a const-qualified object so that it is the const-qualified
// operator() that gets called, which in turn calls _read().
VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::zero(rows,cols)(r,c), static_cast<Scalar>(1));
// test the linear structure, i.e. the following files:
// Sum.h Difference.h Opposite.h ScalarMultiple.h
VERIFY_IS_APPROX(-(-m1), m1);
VERIFY_IS_APPROX(m1+m1, 2*m1);
VERIFY_IS_APPROX(m1+m2-m1, m2);
VERIFY_IS_APPROX(-m2+m1+m2, m1);
VERIFY_IS_APPROX(m1*s1, s1*m1);
VERIFY_IS_APPROX((m1+m2)*s1, s1*m1+s1*m2);
VERIFY_IS_APPROX((s1+s2)*m1, m1*s1+m1*s2);
VERIFY_IS_APPROX((m1-m2)*s1, s1*m1-s1*m2);
VERIFY_IS_APPROX((s1-s2)*m1, m1*s1-m1*s2);
VERIFY_IS_APPROX((-m1+m2)*s1, -s1*m1+s1*m2);
VERIFY_IS_APPROX((-s1+s2)*m1, -m1*s1+m1*s2);
m3 = m2; m3 += m1;
VERIFY_IS_APPROX(m3, m1+m2);
m3 = m2; m3 -= m1;
VERIFY_IS_APPROX(m3, m2-m1);
m3 = m2; m3 *= s1;
VERIFY_IS_APPROX(m3, s1*m2);
if(NumTraits<Scalar>::HasFloatingPoint)
{
m3 = m2; m3 /= s1;
VERIFY_IS_APPROX(m3, m2/s1);
}
// again, test operator() to check const-qualification
VERIFY_IS_APPROX((-m1)(r,c), -(m1(r,c)));
VERIFY_IS_APPROX((m1-m2)(r,c), (m1(r,c))-(m2(r,c)));
VERIFY_IS_APPROX((m1+m2)(r,c), (m1(r,c))+(m2(r,c)));
VERIFY_IS_APPROX((s1*m1)(r,c), s1*(m1(r,c)));
VERIFY_IS_APPROX((m1*s1)(r,c), (m1(r,c))*s1);
if(NumTraits<Scalar>::HasFloatingPoint)
VERIFY_IS_APPROX((m1/s1)(r,c), (m1(r,c))/s1);
// begin testing Product.h: only associativity for now
// (we use Transpose.h but this doesn't count as a test for it)
VERIFY_IS_APPROX((m1*m1.transpose())*m2, m1*(m1.transpose()*m2));
m3 = m1;
m3 *= (m1.transpose() * m2);
VERIFY_IS_APPROX(m3, m1*(m1.transpose()*m2));
VERIFY_IS_APPROX(m3, m1.lazyProduct(m1.transpose()*m2));
// continue testing Product.h: distributivity
VERIFY_IS_APPROX(square*(m1 + m2), square*m1+square*m2);
VERIFY_IS_APPROX(square*(m1 - m2), square*m1-square*m2);
// continue testing Product.h: compatibility with ScalarMultiple.h
VERIFY_IS_APPROX(s1*(square*m1), (s1*square)*m1);
VERIFY_IS_APPROX(s1*(square*m1), square*(m1*s1));
// continue testing Product.h: lazyProduct
VERIFY_IS_APPROX(square.lazyProduct(m1), square*m1);
// again, test operator() to check const-qualification
s1 += square.lazyProduct(m1)(r,c);
// test Product.h together with Identity.h
VERIFY_IS_APPROX(m1, identity*m1);
VERIFY_IS_APPROX(v1, identity*v1);
// again, test operator() to check const-qualification
VERIFY_IS_APPROX(MatrixType::identity(std::max(rows,cols))(r,c), static_cast<Scalar>(r==c));
// test Map.h
Scalar* array1 = new Scalar[rows];
Scalar* array2 = new Scalar[rows];
Matrix<Scalar, Dynamic, 1>::map(array1, rows) = Matrix<Scalar, Dynamic, 1>::random(rows);
Matrix<Scalar, Dynamic, 1>::map(array2, rows)
= Matrix<Scalar, Dynamic, 1>::map(array1, rows);
Matrix<Scalar, Dynamic, 1> ma1 = Matrix<Scalar, Dynamic, 1>::map(array1, rows);
Matrix<Scalar, Dynamic, 1> ma2 = Matrix<Scalar, Dynamic, 1>::map(array2, rows);
VERIFY_IS_APPROX(ma1, ma2);
delete[] array1;
delete[] array2;
}
void EigenTest::testBasicStuff()
{
for(int i = 0; i < m_repeat; i++) {
basicStuff(Matrix<float, 1, 1>());
basicStuff(Matrix4d());
basicStuff(MatrixXcf(3, 3));
basicStuff(MatrixXi(8, 12));
basicStuff(MatrixXcd(20, 20));
}
}
} // namespace Eigen