mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-12 14:25:16 +08:00
474 lines
16 KiB
C++
474 lines
16 KiB
C++
#ifndef THIRD_PARTY_EIGEN3_TENSOR_BENCHMARKS_H_
|
|
#define THIRD_PARTY_EIGEN3_TENSOR_BENCHMARKS_H_
|
|
|
|
typedef int TensorIndex;
|
|
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
|
|
|
|
#include "unsupported/Eigen/CXX11/Tensor"
|
|
#include "benchmark.h"
|
|
|
|
#define BENCHMARK_RANGE(bench, lo, hi) \
|
|
BENCHMARK(bench)->Range(lo, hi)
|
|
|
|
using Eigen::Tensor;
|
|
using Eigen::TensorMap;
|
|
|
|
// TODO(bsteiner): also templatize on the input type since we have users
|
|
// for int8 as well as floats.
|
|
template <typename Device, typename T> class BenchmarkSuite {
|
|
public:
|
|
BenchmarkSuite(const Device& device, size_t m, size_t k, size_t n)
|
|
: m_(m), k_(k), n_(n), device_(device) {
|
|
initialize();
|
|
}
|
|
|
|
BenchmarkSuite(const Device& device, size_t m)
|
|
: m_(m), k_(m), n_(m), device_(device) {
|
|
initialize();
|
|
}
|
|
|
|
~BenchmarkSuite() {
|
|
device_.deallocate(a_);
|
|
device_.deallocate(b_);
|
|
device_.deallocate(c_);
|
|
}
|
|
|
|
void memcpy(int num_iters) {
|
|
eigen_assert(m_ == k_ && k_ == n_);
|
|
StartBenchmarkTiming();
|
|
for (int iter = 0; iter < num_iters; ++iter) {
|
|
device_.memcpy(c_, a_, m_ * m_ * sizeof(T));
|
|
}
|
|
// Record the number of values copied per second
|
|
finalizeBenchmark(static_cast<int64_t>(m_) * m_ * num_iters);
|
|
}
|
|
|
|
void typeCasting(int num_iters) {
|
|
eigen_assert(m_ == n_);
|
|
Eigen::array<TensorIndex, 2> sizes;
|
|
if (sizeof(T) >= sizeof(int)) {
|
|
sizes[0] = m_;
|
|
sizes[1] = k_;
|
|
} else {
|
|
sizes[0] = m_ * sizeof(T) / sizeof(int);
|
|
sizes[1] = k_ * sizeof(T) / sizeof(int);
|
|
}
|
|
const TensorMap<Tensor<int, 2, 0, TensorIndex>, Eigen::Aligned> A((int*)a_, sizes);
|
|
TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B(b_, sizes);
|
|
|
|
StartBenchmarkTiming();
|
|
for (int iter = 0; iter < num_iters; ++iter) {
|
|
B.device(device_) = A.template cast<T>();
|
|
}
|
|
// Record the number of values copied per second
|
|
finalizeBenchmark(static_cast<int64_t>(m_) * k_ * num_iters);
|
|
}
|
|
|
|
void random(int num_iters) {
|
|
eigen_assert(m_ == k_ && k_ == n_);
|
|
Eigen::array<TensorIndex, 2> sizes;
|
|
sizes[0] = m_;
|
|
sizes[1] = m_;
|
|
TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizes);
|
|
|
|
StartBenchmarkTiming();
|
|
for (int iter = 0; iter < num_iters; ++iter) {
|
|
C.device(device_) = C.random();
|
|
}
|
|
// Record the number of random numbers generated per second
|
|
finalizeBenchmark(static_cast<int64_t>(m_) * m_ * num_iters);
|
|
}
|
|
|
|
void slicing(int num_iters) {
|
|
eigen_assert(m_ == k_ && k_ == n_);
|
|
Eigen::array<TensorIndex, 2> sizes;
|
|
sizes[0] = m_;
|
|
sizes[1] = m_;
|
|
const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, sizes);
|
|
const TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, sizes);
|
|
TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizes);
|
|
|
|
const Eigen::DSizes<TensorIndex, 2> quarter_sizes(m_/2, m_/2);
|
|
const Eigen::DSizes<TensorIndex, 2> first_quadrant(0, 0);
|
|
const Eigen::DSizes<TensorIndex, 2> second_quadrant(0, m_/2);
|
|
const Eigen::DSizes<TensorIndex, 2> third_quadrant(m_/2, 0);
|
|
const Eigen::DSizes<TensorIndex, 2> fourth_quadrant(m_/2, m_/2);
|
|
|
|
StartBenchmarkTiming();
|
|
for (int iter = 0; iter < num_iters; ++iter) {
|
|
C.slice(first_quadrant, quarter_sizes).device(device_) =
|
|
A.slice(first_quadrant, quarter_sizes);
|
|
C.slice(second_quadrant, quarter_sizes).device(device_) =
|
|
B.slice(second_quadrant, quarter_sizes);
|
|
C.slice(third_quadrant, quarter_sizes).device(device_) =
|
|
A.slice(third_quadrant, quarter_sizes);
|
|
C.slice(fourth_quadrant, quarter_sizes).device(device_) =
|
|
B.slice(fourth_quadrant, quarter_sizes);
|
|
}
|
|
// Record the number of values copied from the rhs slice to the lhs slice
|
|
// each second
|
|
finalizeBenchmark(static_cast<int64_t>(m_) * m_ * num_iters);
|
|
}
|
|
|
|
void rowChip(int num_iters) {
|
|
Eigen::array<TensorIndex, 2> input_size;
|
|
input_size[0] = k_;
|
|
input_size[1] = n_;
|
|
const TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B(b_, input_size);
|
|
Eigen::array<TensorIndex, 1> output_size;
|
|
output_size[0] = n_;
|
|
TensorMap<Tensor<T, 1, 0, TensorIndex>, Eigen::Aligned> C(c_, output_size);
|
|
|
|
StartBenchmarkTiming();
|
|
for (int iter = 0; iter < num_iters; ++iter) {
|
|
C.device(device_) = B.chip(iter % k_, 0);
|
|
}
|
|
// Record the number of values copied from the rhs chip to the lhs.
|
|
finalizeBenchmark(static_cast<int64_t>(n_) * num_iters);
|
|
}
|
|
|
|
void colChip(int num_iters) {
|
|
Eigen::array<TensorIndex, 2> input_size;
|
|
input_size[0] = k_;
|
|
input_size[1] = n_;
|
|
const TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B(b_, input_size);
|
|
Eigen::array<TensorIndex, 1> output_size;
|
|
output_size[0] = n_;
|
|
TensorMap<Tensor<T, 1, 0, TensorIndex>, Eigen::Aligned> C(c_, output_size);
|
|
|
|
StartBenchmarkTiming();
|
|
for (int iter = 0; iter < num_iters; ++iter) {
|
|
C.device(device_) = B.chip(iter % n_, 1);
|
|
}
|
|
// Record the number of values copied from the rhs chip to the lhs.
|
|
finalizeBenchmark(static_cast<int64_t>(n_) * num_iters);
|
|
}
|
|
|
|
void shuffling(int num_iters) {
|
|
eigen_assert(m_ == n_);
|
|
Eigen::array<TensorIndex, 2> size_a;
|
|
size_a[0] = m_;
|
|
size_a[1] = k_;
|
|
const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, size_a);
|
|
Eigen::array<TensorIndex, 2> size_b;
|
|
size_b[0] = k_;
|
|
size_b[1] = m_;
|
|
TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, size_b);
|
|
|
|
Eigen::array<int, 2> shuffle;
|
|
shuffle[0] = 1;
|
|
shuffle[1] = 0;
|
|
|
|
StartBenchmarkTiming();
|
|
for (int iter = 0; iter < num_iters; ++iter) {
|
|
B.device(device_) = A.shuffle(shuffle);
|
|
}
|
|
// Record the number of values shuffled from A and copied to B each second
|
|
finalizeBenchmark(static_cast<int64_t>(m_) * k_ * num_iters);
|
|
}
|
|
|
|
void padding(int num_iters) {
|
|
eigen_assert(m_ == k_);
|
|
Eigen::array<TensorIndex, 2> size_a;
|
|
size_a[0] = m_;
|
|
size_a[1] = k_-3;
|
|
const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, size_a);
|
|
Eigen::array<TensorIndex, 2> size_b;
|
|
size_b[0] = k_;
|
|
size_b[1] = m_;
|
|
TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, size_b);
|
|
|
|
Eigen::array<Eigen::IndexPair<TensorIndex>, 2> paddings;
|
|
paddings[0] = Eigen::IndexPair<TensorIndex>(0, 0);
|
|
paddings[1] = Eigen::IndexPair<TensorIndex>(2, 1);
|
|
|
|
StartBenchmarkTiming();
|
|
for (int iter = 0; iter < num_iters; ++iter) {
|
|
B.device(device_) = A.pad(paddings);
|
|
}
|
|
// Record the number of values copied from the padded tensor A each second
|
|
finalizeBenchmark(static_cast<int64_t>(m_) * k_ * num_iters);
|
|
}
|
|
|
|
void striding(int num_iters) {
|
|
eigen_assert(m_ == k_);
|
|
Eigen::array<TensorIndex, 2> size_a;
|
|
size_a[0] = m_;
|
|
size_a[1] = k_;
|
|
const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, size_a);
|
|
Eigen::array<TensorIndex, 2> size_b;
|
|
size_b[0] = m_;
|
|
size_b[1] = k_/2;
|
|
TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, size_b);
|
|
|
|
#ifndef EIGEN_HAS_INDEX_LIST
|
|
Eigen::array<TensorIndex, 2> strides;
|
|
strides[0] = 1;
|
|
strides[1] = 2;
|
|
#else
|
|
// Take advantage of cxx11 to give the compiler information it can use to
|
|
// optimize the code.
|
|
Eigen::IndexList<Eigen::type2index<1>, Eigen::type2index<2> > strides;
|
|
#endif
|
|
|
|
StartBenchmarkTiming();
|
|
for (int iter = 0; iter < num_iters; ++iter) {
|
|
B.device(device_) = A.stride(strides);
|
|
}
|
|
// Record the number of values copied from the padded tensor A each second
|
|
finalizeBenchmark(static_cast<int64_t>(m_) * k_ * num_iters);
|
|
}
|
|
|
|
void broadcasting(int num_iters) {
|
|
Eigen::array<TensorIndex, 2> size_a;
|
|
size_a[0] = m_;
|
|
size_a[1] = 1;
|
|
const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, size_a);
|
|
Eigen::array<TensorIndex, 2> size_c;
|
|
size_c[0] = m_;
|
|
size_c[1] = n_;
|
|
TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, size_c);
|
|
|
|
#ifndef EIGEN_HAS_INDEX_LIST
|
|
Eigen::array<int, 2> broadcast;
|
|
broadcast[0] = 1;
|
|
broadcast[1] = n_;
|
|
#else
|
|
// Take advantage of cxx11 to give the compiler information it can use to
|
|
// optimize the code.
|
|
Eigen::IndexList<Eigen::type2index<1>, int> broadcast;
|
|
broadcast.set(1, n_);
|
|
#endif
|
|
|
|
StartBenchmarkTiming();
|
|
for (int iter = 0; iter < num_iters; ++iter) {
|
|
C.device(device_) = A.broadcast(broadcast);
|
|
}
|
|
// Record the number of values broadcasted from A and copied to C each second
|
|
finalizeBenchmark(static_cast<int64_t>(m_) * n_ * num_iters);
|
|
}
|
|
|
|
void coeffWiseOp(int num_iters) {
|
|
eigen_assert(m_ == k_ && k_ == n_);
|
|
Eigen::array<TensorIndex, 2> sizes;
|
|
sizes[0] = m_;
|
|
sizes[1] = m_;
|
|
const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, sizes);
|
|
const TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, sizes);
|
|
TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizes);
|
|
|
|
StartBenchmarkTiming();
|
|
for (int iter = 0; iter < num_iters; ++iter) {
|
|
C.device(device_) = A * A.constant(static_cast<T>(3.14)) + B * B.constant(static_cast<T>(2.7));
|
|
}
|
|
// Record the number of FLOP executed per second (2 multiplications and
|
|
// 1 addition per value)
|
|
finalizeBenchmark(static_cast<int64_t>(3) * m_ * m_ * num_iters);
|
|
}
|
|
|
|
void algebraicFunc(int num_iters) {
|
|
eigen_assert(m_ == k_ && k_ == n_);
|
|
Eigen::array<TensorIndex, 2> sizes;
|
|
sizes[0] = m_;
|
|
sizes[1] = m_;
|
|
const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, sizes);
|
|
const TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, sizes);
|
|
TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizes);
|
|
|
|
StartBenchmarkTiming();
|
|
for (int iter = 0; iter < num_iters; ++iter) {
|
|
C.device(device_) = A.rsqrt() + B.sqrt() * B.square();
|
|
}
|
|
// Record the number of FLOP executed per second (assuming one operation
|
|
// per value)
|
|
finalizeBenchmark(static_cast<int64_t>(m_) * m_ * num_iters);
|
|
}
|
|
|
|
void transcendentalFunc(int num_iters) {
|
|
eigen_assert(m_ == k_ && k_ == n_);
|
|
Eigen::array<TensorIndex, 2> sizes;
|
|
sizes[0] = m_;
|
|
sizes[1] = m_;
|
|
const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, sizes);
|
|
const TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, sizes);
|
|
TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizes);
|
|
|
|
StartBenchmarkTiming();
|
|
for (int iter = 0; iter < num_iters; ++iter) {
|
|
C.device(device_) = A.exp() + B.log();
|
|
}
|
|
// Record the number of FLOP executed per second (assuming one operation
|
|
// per value)
|
|
finalizeBenchmark(static_cast<int64_t>(m_) * m_ * num_iters);
|
|
}
|
|
|
|
// Row reduction
|
|
void rowReduction(int num_iters) {
|
|
Eigen::array<TensorIndex, 2> input_size;
|
|
input_size[0] = k_;
|
|
input_size[1] = n_;
|
|
const TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B(b_, input_size);
|
|
Eigen::array<TensorIndex, 1> output_size;
|
|
output_size[0] = n_;
|
|
TensorMap<Tensor<T, 1, 0, TensorIndex>, Eigen::Aligned> C(c_, output_size);
|
|
|
|
#ifndef EIGEN_HAS_INDEX_LIST
|
|
Eigen::array<TensorIndex, 1> sum_along_dim;
|
|
sum_along_dim[0] = 0;
|
|
#else
|
|
// Take advantage of cxx11 to give the compiler information it can use to
|
|
// optimize the code.
|
|
Eigen::IndexList<Eigen::type2index<0>> sum_along_dim;
|
|
#endif
|
|
|
|
StartBenchmarkTiming();
|
|
for (int iter = 0; iter < num_iters; ++iter) {
|
|
C.device(device_) = B.sum(sum_along_dim);
|
|
}
|
|
// Record the number of FLOP executed per second (assuming one operation
|
|
// per value)
|
|
finalizeBenchmark(static_cast<int64_t>(k_) * n_ * num_iters);
|
|
}
|
|
|
|
// Column reduction
|
|
void colReduction(int num_iters) {
|
|
Eigen::array<TensorIndex, 2> input_size;
|
|
input_size[0] = k_;
|
|
input_size[1] = n_;
|
|
const TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B(
|
|
b_, input_size);
|
|
Eigen::array<TensorIndex, 1> output_size;
|
|
output_size[0] = k_;
|
|
TensorMap<Tensor<T, 1, 0, TensorIndex>, Eigen::Aligned> C(
|
|
c_, output_size);
|
|
|
|
#ifndef EIGEN_HAS_INDEX_LIST
|
|
Eigen::array<TensorIndex, 1> sum_along_dim;
|
|
sum_along_dim[0] = 1;
|
|
#else
|
|
// Take advantage of cxx11 to give the compiler information it can use to
|
|
// optimize the code.
|
|
Eigen::IndexList<Eigen::type2index<1>> sum_along_dim;
|
|
#endif
|
|
|
|
StartBenchmarkTiming();
|
|
for (int iter = 0; iter < num_iters; ++iter) {
|
|
C.device(device_) = B.sum(sum_along_dim);
|
|
}
|
|
// Record the number of FLOP executed per second (assuming one operation
|
|
// per value)
|
|
finalizeBenchmark(static_cast<int64_t>(k_) * n_ * num_iters);
|
|
}
|
|
|
|
// Full reduction
|
|
void fullReduction(int num_iters) {
|
|
Eigen::array<TensorIndex, 2> input_size;
|
|
input_size[0] = k_;
|
|
input_size[1] = n_;
|
|
const TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B(
|
|
b_, input_size);
|
|
Eigen::array<TensorIndex, 0> output_size;
|
|
TensorMap<Tensor<float, 0, 0, TensorIndex>, Eigen::Aligned> C(
|
|
c_, output_size);
|
|
|
|
StartBenchmarkTiming();
|
|
for (int iter = 0; iter < num_iters; ++iter) {
|
|
C.device(device_) = B.sum();
|
|
}
|
|
// Record the number of FLOP executed per second (assuming one operation
|
|
// per value)
|
|
finalizeBenchmark(static_cast<int64_t>(k_) * n_ * num_iters);
|
|
}
|
|
|
|
// do a contraction which is equivalent to a matrix multiplication
|
|
void contraction(int num_iters) {
|
|
Eigen::array<TensorIndex, 2> sizeA;
|
|
sizeA[0] = m_;
|
|
sizeA[1] = k_;
|
|
Eigen::array<TensorIndex, 2> sizeB;
|
|
sizeB[0] = k_;
|
|
sizeB[1] = n_;
|
|
Eigen::array<TensorIndex, 2> sizeC;
|
|
sizeC[0] = m_;
|
|
sizeC[1] = n_;
|
|
|
|
const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, sizeA);
|
|
const TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, sizeB);
|
|
TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizeC);
|
|
|
|
typedef typename Tensor<T, 2>::DimensionPair DimPair;
|
|
Eigen::array<DimPair, 1> dims;
|
|
dims[0] = DimPair(1, 0);
|
|
|
|
StartBenchmarkTiming();
|
|
for (int iter = 0; iter < num_iters; ++iter) {
|
|
C.device(device_) = A.contract(B, dims);
|
|
}
|
|
// Record the number of FLOP executed per second (size_ multiplications and
|
|
// additions for each value in the resulting tensor)
|
|
finalizeBenchmark(static_cast<int64_t>(2) * m_ * n_ * k_ * num_iters);
|
|
}
|
|
|
|
void convolution(int num_iters, int kernel_x, int kernel_y) {
|
|
Eigen::array<TensorIndex, 2> input_sizes;
|
|
input_sizes[0] = m_;
|
|
input_sizes[1] = n_;
|
|
TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, input_sizes);
|
|
Eigen::array<TensorIndex, 2> kernel_sizes;
|
|
kernel_sizes[0] = kernel_x;
|
|
kernel_sizes[1] = kernel_y;
|
|
TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, kernel_sizes);
|
|
Eigen::array<TensorIndex, 2> result_sizes;
|
|
result_sizes[0] = m_ - kernel_x + 1;
|
|
result_sizes[1] = n_ - kernel_y + 1;
|
|
TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, result_sizes);
|
|
Eigen::array<TensorIndex, 2> dims;
|
|
dims[0] = 0;
|
|
dims[1] = 1;
|
|
|
|
StartBenchmarkTiming();
|
|
for (int iter = 0; iter < num_iters; ++iter) {
|
|
C.device(device_) = A.convolve(B, dims);
|
|
}
|
|
// Record the number of FLOP executed per second (kernel_size
|
|
// multiplications and additions for each value in the resulting tensor)
|
|
finalizeBenchmark(static_cast<int64_t>(2) *
|
|
(m_ - kernel_x + 1) * (n_ - kernel_y + 1) * kernel_x * kernel_y * num_iters);
|
|
}
|
|
|
|
private:
|
|
void initialize() {
|
|
a_ = (T *) device_.allocate(m_ * k_ * sizeof(T));
|
|
b_ = (T *) device_.allocate(k_ * n_ * sizeof(T));
|
|
c_ = (T *) device_.allocate(m_ * n_ * sizeof(T));
|
|
|
|
// Initialize the content of the memory pools to prevent asan from
|
|
// complaining.
|
|
device_.memset(a_, 12, m_ * k_ * sizeof(T));
|
|
device_.memset(b_, 23, k_ * n_ * sizeof(T));
|
|
device_.memset(c_, 31, m_ * n_ * sizeof(T));
|
|
|
|
//BenchmarkUseRealTime();
|
|
}
|
|
|
|
inline void finalizeBenchmark(int64_t num_items) {
|
|
#if defined(EIGEN_USE_GPU) && defined(__CUDACC__)
|
|
if (Eigen::internal::is_same<Device, Eigen::GpuDevice>::value) {
|
|
device_.synchronize();
|
|
}
|
|
#endif
|
|
StopBenchmarkTiming();
|
|
SetBenchmarkFlopsProcessed(num_items);
|
|
}
|
|
|
|
|
|
TensorIndex m_;
|
|
TensorIndex k_;
|
|
TensorIndex n_;
|
|
T* a_;
|
|
T* b_;
|
|
T* c_;
|
|
Device device_;
|
|
};
|
|
#endif // THIRD_PARTY_EIGEN3_TENSOR_BENCHMARKS_H_
|