2
0
mirror of https://gitlab.com/libeigen/eigen.git synced 2025-01-06 14:14:46 +08:00
eigen/test/mapstride.cpp
2015-07-29 11:11:23 +02:00

182 lines
7.1 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
template<int Alignment,typename VectorType> void map_class_vector(const VectorType& m)
{
typedef typename VectorType::Index Index;
typedef typename VectorType::Scalar Scalar;
Index size = m.size();
VectorType v = VectorType::Random(size);
Index arraysize = 3*size;
Scalar* a_array = internal::aligned_new<Scalar>(arraysize+1);
Scalar* array = a_array;
if(Alignment!=Aligned)
array = (Scalar*)(ptrdiff_t(a_array) + (internal::packet_traits<Scalar>::AlignedOnScalar?sizeof(Scalar):sizeof(typename NumTraits<Scalar>::Real)));
{
Map<VectorType, Alignment, InnerStride<3> > map(array, size);
map = v;
for(int i = 0; i < size; ++i)
{
VERIFY(array[3*i] == v[i]);
VERIFY(map[i] == v[i]);
}
}
{
Map<VectorType, Unaligned, InnerStride<Dynamic> > map(array, size, InnerStride<Dynamic>(2));
map = v;
for(int i = 0; i < size; ++i)
{
VERIFY(array[2*i] == v[i]);
VERIFY(map[i] == v[i]);
}
}
internal::aligned_delete(a_array, arraysize+1);
}
template<int Alignment,typename MatrixType> void map_class_matrix(const MatrixType& _m)
{
typedef typename MatrixType::Index Index;
typedef typename MatrixType::Scalar Scalar;
Index rows = _m.rows(), cols = _m.cols();
MatrixType m = MatrixType::Random(rows,cols);
Scalar s1 = internal::random<Scalar>();
Index arraysize = 2*(rows+4)*(cols+4);
Scalar* a_array1 = internal::aligned_new<Scalar>(arraysize+1);
Scalar* array1 = a_array1;
if(Alignment!=Aligned)
array1 = (Scalar*)(std::ptrdiff_t(a_array1) + (internal::packet_traits<Scalar>::AlignedOnScalar?sizeof(Scalar):sizeof(typename NumTraits<Scalar>::Real)));
Scalar a_array2[256];
Scalar* array2 = a_array2;
if(Alignment!=Aligned)
array2 = (Scalar*)(std::ptrdiff_t(a_array2) + (internal::packet_traits<Scalar>::AlignedOnScalar?sizeof(Scalar):sizeof(typename NumTraits<Scalar>::Real)));
else
array2 = (Scalar*)(((std::size_t(a_array2)+EIGEN_MAX_ALIGN_BYTES-1)/EIGEN_MAX_ALIGN_BYTES)*EIGEN_MAX_ALIGN_BYTES);
Index maxsize2 = a_array2 - array2 + 256;
// test no inner stride and some dynamic outer stride
for(int k=0; k<2; ++k)
{
if(k==1 && (m.innerSize()+1)*m.outerSize() > maxsize2)
break;
Scalar* array = (k==0 ? array1 : array2);
Map<MatrixType, Alignment, OuterStride<Dynamic> > map(array, rows, cols, OuterStride<Dynamic>(m.innerSize()+1));
map = m;
VERIFY(map.outerStride() == map.innerSize()+1);
for(int i = 0; i < m.outerSize(); ++i)
for(int j = 0; j < m.innerSize(); ++j)
{
VERIFY(array[map.outerStride()*i+j] == m.coeffByOuterInner(i,j));
VERIFY(map.coeffByOuterInner(i,j) == m.coeffByOuterInner(i,j));
}
VERIFY_IS_APPROX(s1*map,s1*m);
map *= s1;
VERIFY_IS_APPROX(map,s1*m);
}
// test no inner stride and an outer stride of +4. This is quite important as for fixed-size matrices,
// this allows to hit the special case where it's vectorizable.
for(int k=0; k<2; ++k)
{
if(k==1 && (m.innerSize()+4)*m.outerSize() > maxsize2)
break;
Scalar* array = (k==0 ? array1 : array2);
enum {
InnerSize = MatrixType::InnerSizeAtCompileTime,
OuterStrideAtCompileTime = InnerSize==Dynamic ? Dynamic : InnerSize+4
};
Map<MatrixType, Alignment, OuterStride<OuterStrideAtCompileTime> >
map(array, rows, cols, OuterStride<OuterStrideAtCompileTime>(m.innerSize()+4));
map = m;
VERIFY(map.outerStride() == map.innerSize()+4);
for(int i = 0; i < m.outerSize(); ++i)
for(int j = 0; j < m.innerSize(); ++j)
{
VERIFY(array[map.outerStride()*i+j] == m.coeffByOuterInner(i,j));
VERIFY(map.coeffByOuterInner(i,j) == m.coeffByOuterInner(i,j));
}
VERIFY_IS_APPROX(s1*map,s1*m);
map *= s1;
VERIFY_IS_APPROX(map,s1*m);
}
// test both inner stride and outer stride
for(int k=0; k<2; ++k)
{
if(k==1 && (2*m.innerSize()+1)*(m.outerSize()*2) > maxsize2)
break;
Scalar* array = (k==0 ? array1 : array2);
Map<MatrixType, Alignment, Stride<Dynamic,Dynamic> > map(array, rows, cols, Stride<Dynamic,Dynamic>(2*m.innerSize()+1, 2));
map = m;
VERIFY(map.outerStride() == 2*map.innerSize()+1);
VERIFY(map.innerStride() == 2);
for(int i = 0; i < m.outerSize(); ++i)
for(int j = 0; j < m.innerSize(); ++j)
{
VERIFY(array[map.outerStride()*i+map.innerStride()*j] == m.coeffByOuterInner(i,j));
VERIFY(map.coeffByOuterInner(i,j) == m.coeffByOuterInner(i,j));
}
VERIFY_IS_APPROX(s1*map,s1*m);
map *= s1;
VERIFY_IS_APPROX(map,s1*m);
}
internal::aligned_delete(a_array1, arraysize+1);
}
void test_mapstride()
{
for(int i = 0; i < g_repeat; i++) {
int maxn = 30;
CALL_SUBTEST_1( map_class_vector<Aligned>(Matrix<float, 1, 1>()) );
CALL_SUBTEST_1( map_class_vector<Unaligned>(Matrix<float, 1, 1>()) );
CALL_SUBTEST_2( map_class_vector<Aligned>(Vector4d()) );
CALL_SUBTEST_2( map_class_vector<Unaligned>(Vector4d()) );
CALL_SUBTEST_3( map_class_vector<Aligned>(RowVector4f()) );
CALL_SUBTEST_3( map_class_vector<Unaligned>(RowVector4f()) );
CALL_SUBTEST_4( map_class_vector<Aligned>(VectorXcf(internal::random<int>(1,maxn))) );
CALL_SUBTEST_4( map_class_vector<Unaligned>(VectorXcf(internal::random<int>(1,maxn))) );
CALL_SUBTEST_5( map_class_vector<Aligned>(VectorXi(internal::random<int>(1,maxn))) );
CALL_SUBTEST_5( map_class_vector<Unaligned>(VectorXi(internal::random<int>(1,maxn))) );
CALL_SUBTEST_1( map_class_matrix<Aligned>(Matrix<float, 1, 1>()) );
CALL_SUBTEST_1( map_class_matrix<Unaligned>(Matrix<float, 1, 1>()) );
CALL_SUBTEST_2( map_class_matrix<Aligned>(Matrix4d()) );
CALL_SUBTEST_2( map_class_matrix<Unaligned>(Matrix4d()) );
CALL_SUBTEST_3( map_class_matrix<Aligned>(Matrix<float,3,5>()) );
CALL_SUBTEST_3( map_class_matrix<Unaligned>(Matrix<float,3,5>()) );
CALL_SUBTEST_3( map_class_matrix<Aligned>(Matrix<float,4,8>()) );
CALL_SUBTEST_3( map_class_matrix<Unaligned>(Matrix<float,4,8>()) );
CALL_SUBTEST_4( map_class_matrix<Aligned>(MatrixXcf(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) );
CALL_SUBTEST_4( map_class_matrix<Unaligned>(MatrixXcf(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) );
CALL_SUBTEST_5( map_class_matrix<Aligned>(MatrixXi(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) );
CALL_SUBTEST_5( map_class_matrix<Unaligned>(MatrixXi(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) );
CALL_SUBTEST_6( map_class_matrix<Aligned>(MatrixXcd(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) );
CALL_SUBTEST_6( map_class_matrix<Unaligned>(MatrixXcd(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) );
TEST_SET_BUT_UNUSED_VARIABLE(maxn);
}
}