mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-06 14:14:46 +08:00
143 lines
5.5 KiB
C++
143 lines
5.5 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "common.h"
|
|
|
|
struct scalar_norm1_op {
|
|
typedef RealScalar result_type;
|
|
EIGEN_EMPTY_STRUCT_CTOR(scalar_norm1_op)
|
|
inline RealScalar operator() (const Scalar& a) const { return internal::norm1(a); }
|
|
};
|
|
namespace Eigen {
|
|
namespace internal {
|
|
template<> struct functor_traits<scalar_norm1_op >
|
|
{
|
|
enum { Cost = 3 * NumTraits<Scalar>::AddCost, PacketAccess = 0 };
|
|
};
|
|
}
|
|
}
|
|
|
|
// computes the sum of magnitudes of all vector elements or, for a complex vector x, the sum
|
|
// res = |Rex1| + |Imx1| + |Rex2| + |Imx2| + ... + |Rexn| + |Imxn|, where x is a vector of order n
|
|
RealScalar EIGEN_CAT(EIGEN_CAT(REAL_SCALAR_SUFFIX,SCALAR_SUFFIX),asum_)(int *n, RealScalar *px, int *incx)
|
|
{
|
|
// std::cerr << "__asum " << *n << " " << *incx << "\n";
|
|
Complex* x = reinterpret_cast<Complex*>(px);
|
|
|
|
if(*n<=0) return 0;
|
|
|
|
if(*incx==1) return vector(x,*n).unaryExpr<scalar_norm1_op>().sum();
|
|
else return vector(x,*n,std::abs(*incx)).unaryExpr<scalar_norm1_op>().sum();
|
|
}
|
|
|
|
// computes a dot product of a conjugated vector with another vector.
|
|
int EIGEN_BLAS_FUNC(dotcw)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar* pres)
|
|
{
|
|
// std::cerr << "_dotc " << *n << " " << *incx << " " << *incy << "\n";
|
|
|
|
if(*n<=0) return 0;
|
|
|
|
Scalar* x = reinterpret_cast<Scalar*>(px);
|
|
Scalar* y = reinterpret_cast<Scalar*>(py);
|
|
Scalar* res = reinterpret_cast<Scalar*>(pres);
|
|
|
|
if(*incx==1 && *incy==1) *res = (vector(x,*n).dot(vector(y,*n)));
|
|
else if(*incx>0 && *incy>0) *res = (vector(x,*n,*incx).dot(vector(y,*n,*incy)));
|
|
else if(*incx<0 && *incy>0) *res = (vector(x,*n,-*incx).reverse().dot(vector(y,*n,*incy)));
|
|
else if(*incx>0 && *incy<0) *res = (vector(x,*n,*incx).dot(vector(y,*n,-*incy).reverse()));
|
|
else if(*incx<0 && *incy<0) *res = (vector(x,*n,-*incx).reverse().dot(vector(y,*n,-*incy).reverse()));
|
|
return 0;
|
|
}
|
|
|
|
// computes a vector-vector dot product without complex conjugation.
|
|
int EIGEN_BLAS_FUNC(dotuw)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar* pres)
|
|
{
|
|
// std::cerr << "_dotu " << *n << " " << *incx << " " << *incy << "\n";
|
|
|
|
if(*n<=0) return 0;
|
|
|
|
Scalar* x = reinterpret_cast<Scalar*>(px);
|
|
Scalar* y = reinterpret_cast<Scalar*>(py);
|
|
Scalar* res = reinterpret_cast<Scalar*>(pres);
|
|
|
|
if(*incx==1 && *incy==1) *res = (vector(x,*n).cwiseProduct(vector(y,*n))).sum();
|
|
else if(*incx>0 && *incy>0) *res = (vector(x,*n,*incx).cwiseProduct(vector(y,*n,*incy))).sum();
|
|
else if(*incx<0 && *incy>0) *res = (vector(x,*n,-*incx).reverse().cwiseProduct(vector(y,*n,*incy))).sum();
|
|
else if(*incx>0 && *incy<0) *res = (vector(x,*n,*incx).cwiseProduct(vector(y,*n,-*incy).reverse())).sum();
|
|
else if(*incx<0 && *incy<0) *res = (vector(x,*n,-*incx).reverse().cwiseProduct(vector(y,*n,-*incy).reverse())).sum();
|
|
return 0;
|
|
}
|
|
|
|
RealScalar EIGEN_CAT(EIGEN_CAT(REAL_SCALAR_SUFFIX,SCALAR_SUFFIX),nrm2_)(int *n, RealScalar *px, int *incx)
|
|
{
|
|
// std::cerr << "__nrm2 " << *n << " " << *incx << "\n";
|
|
if(*n<=0) return 0;
|
|
|
|
Scalar* x = reinterpret_cast<Scalar*>(px);
|
|
|
|
if(*incx==1)
|
|
return vector(x,*n).stableNorm();
|
|
|
|
return vector(x,*n,*incx).stableNorm();
|
|
}
|
|
|
|
int EIGEN_CAT(EIGEN_CAT(SCALAR_SUFFIX,REAL_SCALAR_SUFFIX),rot_)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pc, RealScalar *ps)
|
|
{
|
|
if(*n<=0) return 0;
|
|
|
|
Scalar* x = reinterpret_cast<Scalar*>(px);
|
|
Scalar* y = reinterpret_cast<Scalar*>(py);
|
|
RealScalar c = *pc;
|
|
RealScalar s = *ps;
|
|
|
|
StridedVectorType vx(vector(x,*n,std::abs(*incx)));
|
|
StridedVectorType vy(vector(y,*n,std::abs(*incy)));
|
|
|
|
Reverse<StridedVectorType> rvx(vx);
|
|
Reverse<StridedVectorType> rvy(vy);
|
|
|
|
// TODO implement mixed real-scalar rotations
|
|
if(*incx<0 && *incy>0) internal::apply_rotation_in_the_plane(rvx, vy, JacobiRotation<Scalar>(c,s));
|
|
else if(*incx>0 && *incy<0) internal::apply_rotation_in_the_plane(vx, rvy, JacobiRotation<Scalar>(c,s));
|
|
else internal::apply_rotation_in_the_plane(vx, vy, JacobiRotation<Scalar>(c,s));
|
|
|
|
return 0;
|
|
}
|
|
|
|
int EIGEN_CAT(EIGEN_CAT(SCALAR_SUFFIX,REAL_SCALAR_SUFFIX),scal_)(int *n, RealScalar *palpha, RealScalar *px, int *incx)
|
|
{
|
|
if(*n<=0) return 0;
|
|
|
|
Scalar* x = reinterpret_cast<Scalar*>(px);
|
|
RealScalar alpha = *palpha;
|
|
|
|
// std::cerr << "__scal " << *n << " " << alpha << " " << *incx << "\n";
|
|
|
|
if(*incx==1) vector(x,*n) *= alpha;
|
|
else vector(x,*n,std::abs(*incx)) *= alpha;
|
|
|
|
return 0;
|
|
}
|
|
|