mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-12 14:25:16 +08:00
197 lines
4.8 KiB
Fortran
197 lines
4.8 KiB
Fortran
*> \brief \b SLARFG
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download SLARFG + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slarfg.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slarfg.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slarfg.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE SLARFG( N, ALPHA, X, INCX, TAU )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER INCX, N
|
|
* REAL ALPHA, TAU
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* REAL X( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> SLARFG generates a real elementary reflector H of order n, such
|
|
*> that
|
|
*>
|
|
*> H * ( alpha ) = ( beta ), H**T * H = I.
|
|
*> ( x ) ( 0 )
|
|
*>
|
|
*> where alpha and beta are scalars, and x is an (n-1)-element real
|
|
*> vector. H is represented in the form
|
|
*>
|
|
*> H = I - tau * ( 1 ) * ( 1 v**T ) ,
|
|
*> ( v )
|
|
*>
|
|
*> where tau is a real scalar and v is a real (n-1)-element
|
|
*> vector.
|
|
*>
|
|
*> If the elements of x are all zero, then tau = 0 and H is taken to be
|
|
*> the unit matrix.
|
|
*>
|
|
*> Otherwise 1 <= tau <= 2.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the elementary reflector.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] ALPHA
|
|
*> \verbatim
|
|
*> ALPHA is REAL
|
|
*> On entry, the value alpha.
|
|
*> On exit, it is overwritten with the value beta.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] X
|
|
*> \verbatim
|
|
*> X is REAL array, dimension
|
|
*> (1+(N-2)*abs(INCX))
|
|
*> On entry, the vector x.
|
|
*> On exit, it is overwritten with the vector v.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] INCX
|
|
*> \verbatim
|
|
*> INCX is INTEGER
|
|
*> The increment between elements of X. INCX > 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] TAU
|
|
*> \verbatim
|
|
*> TAU is REAL
|
|
*> The value tau.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \date November 2011
|
|
*
|
|
*> \ingroup realOTHERauxiliary
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE SLARFG( N, ALPHA, X, INCX, TAU )
|
|
*
|
|
* -- LAPACK auxiliary routine (version 3.4.0) --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
* November 2011
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER INCX, N
|
|
REAL ALPHA, TAU
|
|
* ..
|
|
* .. Array Arguments ..
|
|
REAL X( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
REAL ONE, ZERO
|
|
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER J, KNT
|
|
REAL BETA, RSAFMN, SAFMIN, XNORM
|
|
* ..
|
|
* .. External Functions ..
|
|
REAL SLAMCH, SLAPY2, SNRM2
|
|
EXTERNAL SLAMCH, SLAPY2, SNRM2
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, SIGN
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL SSCAL
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
IF( N.LE.1 ) THEN
|
|
TAU = ZERO
|
|
RETURN
|
|
END IF
|
|
*
|
|
XNORM = SNRM2( N-1, X, INCX )
|
|
*
|
|
IF( XNORM.EQ.ZERO ) THEN
|
|
*
|
|
* H = I
|
|
*
|
|
TAU = ZERO
|
|
ELSE
|
|
*
|
|
* general case
|
|
*
|
|
BETA = -SIGN( SLAPY2( ALPHA, XNORM ), ALPHA )
|
|
SAFMIN = SLAMCH( 'S' ) / SLAMCH( 'E' )
|
|
KNT = 0
|
|
IF( ABS( BETA ).LT.SAFMIN ) THEN
|
|
*
|
|
* XNORM, BETA may be inaccurate; scale X and recompute them
|
|
*
|
|
RSAFMN = ONE / SAFMIN
|
|
10 CONTINUE
|
|
KNT = KNT + 1
|
|
CALL SSCAL( N-1, RSAFMN, X, INCX )
|
|
BETA = BETA*RSAFMN
|
|
ALPHA = ALPHA*RSAFMN
|
|
IF( ABS( BETA ).LT.SAFMIN )
|
|
$ GO TO 10
|
|
*
|
|
* New BETA is at most 1, at least SAFMIN
|
|
*
|
|
XNORM = SNRM2( N-1, X, INCX )
|
|
BETA = -SIGN( SLAPY2( ALPHA, XNORM ), ALPHA )
|
|
END IF
|
|
TAU = ( BETA-ALPHA ) / BETA
|
|
CALL SSCAL( N-1, ONE / ( ALPHA-BETA ), X, INCX )
|
|
*
|
|
* If ALPHA is subnormal, it may lose relative accuracy
|
|
*
|
|
DO 20 J = 1, KNT
|
|
BETA = BETA*SAFMIN
|
|
20 CONTINUE
|
|
ALPHA = BETA
|
|
END IF
|
|
*
|
|
RETURN
|
|
*
|
|
* End of SLARFG
|
|
*
|
|
END
|