mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-24 14:45:14 +08:00
94 lines
5.2 KiB
C++
94 lines
5.2 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "main.h"
|
|
|
|
template<typename Scalar> void trmm(int size,int /*othersize*/)
|
|
{
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
|
|
typedef Matrix<Scalar,Dynamic,Dynamic,ColMajor> MatrixColMaj;
|
|
typedef Matrix<Scalar,Dynamic,Dynamic,RowMajor> MatrixRowMaj;
|
|
|
|
DenseIndex rows = size;
|
|
DenseIndex cols = ei_random<DenseIndex>(1,size);
|
|
|
|
MatrixColMaj triV(rows,cols), triH(cols,rows), upTri(cols,rows), loTri(rows,cols),
|
|
unitUpTri(cols,rows), unitLoTri(rows,cols), strictlyUpTri(cols,rows), strictlyLoTri(rows,cols);
|
|
MatrixColMaj ge1(rows,cols), ge2(cols,rows), ge3;
|
|
MatrixRowMaj rge3;
|
|
|
|
Scalar s1 = ei_random<Scalar>(),
|
|
s2 = ei_random<Scalar>();
|
|
|
|
triV.setRandom();
|
|
triH.setRandom();
|
|
loTri = triV.template triangularView<Lower>();
|
|
upTri = triH.template triangularView<Upper>();
|
|
unitLoTri = triV.template triangularView<UnitLower>();
|
|
unitUpTri = triH.template triangularView<UnitUpper>();
|
|
strictlyLoTri = triV.template triangularView<StrictlyLower>();
|
|
strictlyUpTri = triH.template triangularView<StrictlyUpper>();
|
|
ge1.setRandom();
|
|
ge2.setRandom();
|
|
|
|
VERIFY_IS_APPROX( ge3 = triV.template triangularView<Lower>() * ge2, loTri * ge2);
|
|
VERIFY_IS_APPROX( ge3 = ge2 * triV.template triangularView<Lower>(), ge2 * loTri);
|
|
VERIFY_IS_APPROX( ge3 = triH.template triangularView<Upper>() * ge1, upTri * ge1);
|
|
VERIFY_IS_APPROX( ge3 = ge1 * triH.template triangularView<Upper>(), ge1 * upTri);
|
|
VERIFY_IS_APPROX( ge3 = (s1*triV.adjoint()).template triangularView<Upper>() * (s2*ge1), s1*loTri.adjoint() * (s2*ge1));
|
|
VERIFY_IS_APPROX( ge3 = ge1 * triV.adjoint().template triangularView<Upper>(), ge1 * loTri.adjoint());
|
|
VERIFY_IS_APPROX( ge3 = triH.adjoint().template triangularView<Lower>() * ge2, upTri.adjoint() * ge2);
|
|
VERIFY_IS_APPROX( ge3 = ge2 * triH.adjoint().template triangularView<Lower>(), ge2 * upTri.adjoint());
|
|
VERIFY_IS_APPROX( ge3 = triV.template triangularView<Lower>() * ge1.adjoint(), loTri * ge1.adjoint());
|
|
VERIFY_IS_APPROX( ge3 = ge1.adjoint() * triV.template triangularView<Lower>(), ge1.adjoint() * loTri);
|
|
VERIFY_IS_APPROX( ge3 = triH.template triangularView<Upper>() * ge2.adjoint(), upTri * ge2.adjoint());
|
|
VERIFY_IS_APPROX(rge3.noalias() = triH.template triangularView<Upper>() * ge2.adjoint(), upTri * ge2.adjoint());
|
|
VERIFY_IS_APPROX( ge3 = (s1*triV).adjoint().template triangularView<Upper>() * ge2.adjoint(), ei_conj(s1) * loTri.adjoint() * ge2.adjoint());
|
|
VERIFY_IS_APPROX(rge3.noalias() = triV.adjoint().template triangularView<Upper>() * ge2.adjoint(), loTri.adjoint() * ge2.adjoint());
|
|
VERIFY_IS_APPROX( ge3 = triH.adjoint().template triangularView<Lower>() * ge1.adjoint(), upTri.adjoint() * ge1.adjoint());
|
|
VERIFY_IS_APPROX(rge3.noalias() = triH.adjoint().template triangularView<Lower>() * ge1.adjoint(), upTri.adjoint() * ge1.adjoint());
|
|
|
|
VERIFY_IS_APPROX( ge3 = triV.template triangularView<UnitLower>() * ge2, unitLoTri * ge2);
|
|
VERIFY_IS_APPROX( rge3.noalias() = ge2 * triV.template triangularView<UnitLower>(), ge2 * unitLoTri);
|
|
VERIFY_IS_APPROX( ge3 = ge2 * triV.template triangularView<UnitLower>(), ge2 * unitLoTri);
|
|
VERIFY_IS_APPROX( ge3 = (s1*triV).adjoint().template triangularView<UnitUpper>() * ge2.adjoint(), ei_conj(s1) * unitLoTri.adjoint() * ge2.adjoint());
|
|
|
|
VERIFY_IS_APPROX( ge3 = triV.template triangularView<StrictlyLower>() * ge2, strictlyLoTri * ge2);
|
|
VERIFY_IS_APPROX( rge3.noalias() = ge2 * triV.template triangularView<StrictlyLower>(), ge2 * strictlyLoTri);
|
|
VERIFY_IS_APPROX( ge3 = ge2 * triV.template triangularView<StrictlyLower>(), ge2 * strictlyLoTri);
|
|
VERIFY_IS_APPROX( ge3 = (s1*triV).adjoint().template triangularView<StrictlyUpper>() * ge2.adjoint(), ei_conj(s1) * strictlyLoTri.adjoint() * ge2.adjoint());
|
|
}
|
|
|
|
void test_product_trmm()
|
|
{
|
|
for(int i = 0; i < g_repeat ; i++)
|
|
{
|
|
CALL_SUBTEST_1((trmm<float>(ei_random<int>(1,320),ei_random<int>(1,320))));
|
|
CALL_SUBTEST_2((trmm<double>(ei_random<int>(1,320),ei_random<int>(1,320))));
|
|
CALL_SUBTEST_3((trmm<std::complex<float> >(ei_random<int>(1,200),ei_random<int>(1,200))));
|
|
CALL_SUBTEST_4((trmm<std::complex<double> >(ei_random<int>(1,200),ei_random<int>(1,200))));
|
|
}
|
|
}
|