mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-15 07:10:37 +08:00
255 lines
8.8 KiB
Plaintext
255 lines
8.8 KiB
Plaintext
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
|
|
#define EIGEN_TEST_NO_LONGDOUBLE
|
|
#define EIGEN_TEST_FUNC cxx11_tensor_cuda
|
|
#define EIGEN_USE_GPU
|
|
|
|
#if defined __CUDACC_VER__ && __CUDACC_VER__ >= 70500
|
|
#include <cuda_fp16.h>
|
|
#endif
|
|
#include "main.h"
|
|
#include <unsupported/Eigen/CXX11/Tensor>
|
|
|
|
using Eigen::Tensor;
|
|
|
|
template <int Layout>
|
|
void test_cuda_simple_argmax()
|
|
{
|
|
Tensor<double, 3, Layout> in(Eigen::array<DenseIndex, 3>(72,53,97));
|
|
Tensor<DenseIndex, 1, Layout> out_max(Eigen::array<DenseIndex, 1>(1));
|
|
Tensor<DenseIndex, 1, Layout> out_min(Eigen::array<DenseIndex, 1>(1));
|
|
in.setRandom();
|
|
in *= in.constant(100.0);
|
|
in(0, 0, 0) = -1000.0;
|
|
in(71, 52, 96) = 1000.0;
|
|
|
|
std::size_t in_bytes = in.size() * sizeof(double);
|
|
std::size_t out_bytes = out_max.size() * sizeof(DenseIndex);
|
|
|
|
double* d_in;
|
|
DenseIndex* d_out_max;
|
|
DenseIndex* d_out_min;
|
|
cudaMalloc((void**)(&d_in), in_bytes);
|
|
cudaMalloc((void**)(&d_out_max), out_bytes);
|
|
cudaMalloc((void**)(&d_out_min), out_bytes);
|
|
|
|
cudaMemcpy(d_in, in.data(), in_bytes, cudaMemcpyHostToDevice);
|
|
|
|
Eigen::CudaStreamDevice stream;
|
|
Eigen::GpuDevice gpu_device(&stream);
|
|
|
|
Eigen::TensorMap<Eigen::Tensor<double, 3, Layout>, Aligned > gpu_in(d_in, Eigen::array<DenseIndex, 3>(72,53,97));
|
|
Eigen::TensorMap<Eigen::Tensor<DenseIndex, 1, Layout>, Aligned > gpu_out_max(d_out_max, Eigen::array<DenseIndex, 1>(1));
|
|
Eigen::TensorMap<Eigen::Tensor<DenseIndex, 1, Layout>, Aligned > gpu_out_min(d_out_min, Eigen::array<DenseIndex, 1>(1));
|
|
|
|
gpu_out_max.device(gpu_device) = gpu_in.argmax();
|
|
gpu_out_min.device(gpu_device) = gpu_in.argmin();
|
|
|
|
assert(cudaMemcpyAsync(out_max.data(), d_out_max, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
|
|
assert(cudaMemcpyAsync(out_min.data(), d_out_min, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
|
|
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
|
|
|
|
VERIFY_IS_EQUAL(out_max(Eigen::array<DenseIndex, 1>(0)), 72*53*97 - 1);
|
|
VERIFY_IS_EQUAL(out_min(Eigen::array<DenseIndex, 1>(0)), 0);
|
|
|
|
cudaFree(d_in);
|
|
cudaFree(d_out_max);
|
|
cudaFree(d_out_min);
|
|
}
|
|
|
|
template <int DataLayout>
|
|
void test_cuda_argmax_dim()
|
|
{
|
|
Tensor<float, 4, DataLayout> tensor(2,3,5,7);
|
|
std::vector<int> dims;
|
|
dims.push_back(2); dims.push_back(3); dims.push_back(5); dims.push_back(7);
|
|
|
|
for (int dim = 0; dim < 4; ++dim) {
|
|
tensor.setRandom();
|
|
tensor = (tensor + tensor.constant(0.5)).log();
|
|
|
|
array<DenseIndex, 3> out_shape;
|
|
for (int d = 0; d < 3; ++d) out_shape[d] = (d < dim) ? dims[d] : dims[d+1];
|
|
|
|
Tensor<DenseIndex, 3, DataLayout> tensor_arg(out_shape);
|
|
|
|
array<DenseIndex, 4> ix;
|
|
for (int i = 0; i < 2; ++i) {
|
|
for (int j = 0; j < 3; ++j) {
|
|
for (int k = 0; k < 5; ++k) {
|
|
for (int l = 0; l < 7; ++l) {
|
|
ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l;
|
|
if (ix[dim] != 0) continue;
|
|
// suppose dim == 1, then for all i, k, l, set tensor(i, 0, k, l) = 10.0
|
|
tensor(ix) = 10.0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
std::size_t in_bytes = tensor.size() * sizeof(float);
|
|
std::size_t out_bytes = tensor_arg.size() * sizeof(DenseIndex);
|
|
|
|
float* d_in;
|
|
DenseIndex* d_out;
|
|
cudaMalloc((void**)(&d_in), in_bytes);
|
|
cudaMalloc((void**)(&d_out), out_bytes);
|
|
|
|
cudaMemcpy(d_in, tensor.data(), in_bytes, cudaMemcpyHostToDevice);
|
|
|
|
Eigen::CudaStreamDevice stream;
|
|
Eigen::GpuDevice gpu_device(&stream);
|
|
|
|
Eigen::TensorMap<Eigen::Tensor<float, 4, DataLayout>, Aligned > gpu_in(d_in, Eigen::array<DenseIndex, 4>(2, 3, 5, 7));
|
|
Eigen::TensorMap<Eigen::Tensor<DenseIndex, 3, DataLayout>, Aligned > gpu_out(d_out, out_shape);
|
|
|
|
gpu_out.device(gpu_device) = gpu_in.argmax(dim);
|
|
|
|
assert(cudaMemcpyAsync(tensor_arg.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
|
|
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
|
|
|
|
VERIFY_IS_EQUAL(tensor_arg.size(),
|
|
size_t(2*3*5*7 / tensor.dimension(dim)));
|
|
|
|
for (DenseIndex n = 0; n < tensor_arg.size(); ++n) {
|
|
// Expect max to be in the first index of the reduced dimension
|
|
VERIFY_IS_EQUAL(tensor_arg.data()[n], 0);
|
|
}
|
|
|
|
for (int i = 0; i < 2; ++i) {
|
|
for (int j = 0; j < 3; ++j) {
|
|
for (int k = 0; k < 5; ++k) {
|
|
for (int l = 0; l < 7; ++l) {
|
|
ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l;
|
|
if (ix[dim] != tensor.dimension(dim) - 1) continue;
|
|
// suppose dim == 1, then for all i, k, l, set tensor(i, 2, k, l) = 20.0
|
|
tensor(ix) = 20.0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
cudaMemcpy(d_in, tensor.data(), in_bytes, cudaMemcpyHostToDevice);
|
|
|
|
gpu_out.device(gpu_device) = gpu_in.argmax(dim);
|
|
|
|
assert(cudaMemcpyAsync(tensor_arg.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
|
|
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
|
|
|
|
for (DenseIndex n = 0; n < tensor_arg.size(); ++n) {
|
|
// Expect max to be in the last index of the reduced dimension
|
|
VERIFY_IS_EQUAL(tensor_arg.data()[n], tensor.dimension(dim) - 1);
|
|
}
|
|
|
|
cudaFree(d_in);
|
|
cudaFree(d_out);
|
|
}
|
|
}
|
|
|
|
template <int DataLayout>
|
|
void test_cuda_argmin_dim()
|
|
{
|
|
Tensor<float, 4, DataLayout> tensor(2,3,5,7);
|
|
std::vector<int> dims;
|
|
dims.push_back(2); dims.push_back(3); dims.push_back(5); dims.push_back(7);
|
|
|
|
for (int dim = 0; dim < 4; ++dim) {
|
|
tensor.setRandom();
|
|
tensor = (tensor + tensor.constant(0.5)).log();
|
|
|
|
array<DenseIndex, 3> out_shape;
|
|
for (int d = 0; d < 3; ++d) out_shape[d] = (d < dim) ? dims[d] : dims[d+1];
|
|
|
|
Tensor<DenseIndex, 3, DataLayout> tensor_arg(out_shape);
|
|
|
|
array<DenseIndex, 4> ix;
|
|
for (int i = 0; i < 2; ++i) {
|
|
for (int j = 0; j < 3; ++j) {
|
|
for (int k = 0; k < 5; ++k) {
|
|
for (int l = 0; l < 7; ++l) {
|
|
ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l;
|
|
if (ix[dim] != 0) continue;
|
|
// suppose dim == 1, then for all i, k, l, set tensor(i, 0, k, l) = 10.0
|
|
tensor(ix) = -10.0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
std::size_t in_bytes = tensor.size() * sizeof(float);
|
|
std::size_t out_bytes = tensor_arg.size() * sizeof(DenseIndex);
|
|
|
|
float* d_in;
|
|
DenseIndex* d_out;
|
|
cudaMalloc((void**)(&d_in), in_bytes);
|
|
cudaMalloc((void**)(&d_out), out_bytes);
|
|
|
|
cudaMemcpy(d_in, tensor.data(), in_bytes, cudaMemcpyHostToDevice);
|
|
|
|
Eigen::CudaStreamDevice stream;
|
|
Eigen::GpuDevice gpu_device(&stream);
|
|
|
|
Eigen::TensorMap<Eigen::Tensor<float, 4, DataLayout>, Aligned > gpu_in(d_in, Eigen::array<DenseIndex, 4>(2, 3, 5, 7));
|
|
Eigen::TensorMap<Eigen::Tensor<DenseIndex, 3, DataLayout>, Aligned > gpu_out(d_out, out_shape);
|
|
|
|
gpu_out.device(gpu_device) = gpu_in.argmin(dim);
|
|
|
|
assert(cudaMemcpyAsync(tensor_arg.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
|
|
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
|
|
|
|
VERIFY_IS_EQUAL(tensor_arg.size(),
|
|
2*3*5*7 / tensor.dimension(dim));
|
|
|
|
for (DenseIndex n = 0; n < tensor_arg.size(); ++n) {
|
|
// Expect min to be in the first index of the reduced dimension
|
|
VERIFY_IS_EQUAL(tensor_arg.data()[n], 0);
|
|
}
|
|
|
|
for (int i = 0; i < 2; ++i) {
|
|
for (int j = 0; j < 3; ++j) {
|
|
for (int k = 0; k < 5; ++k) {
|
|
for (int l = 0; l < 7; ++l) {
|
|
ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l;
|
|
if (ix[dim] != tensor.dimension(dim) - 1) continue;
|
|
// suppose dim == 1, then for all i, k, l, set tensor(i, 2, k, l) = 20.0
|
|
tensor(ix) = -20.0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
cudaMemcpy(d_in, tensor.data(), in_bytes, cudaMemcpyHostToDevice);
|
|
|
|
gpu_out.device(gpu_device) = gpu_in.argmin(dim);
|
|
|
|
assert(cudaMemcpyAsync(tensor_arg.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
|
|
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
|
|
|
|
for (DenseIndex n = 0; n < tensor_arg.size(); ++n) {
|
|
// Expect max to be in the last index of the reduced dimension
|
|
VERIFY_IS_EQUAL(tensor_arg.data()[n], tensor.dimension(dim) - 1);
|
|
}
|
|
|
|
cudaFree(d_in);
|
|
cudaFree(d_out);
|
|
}
|
|
}
|
|
|
|
void test_cxx11_tensor_cuda()
|
|
{
|
|
CALL_SUBTEST_1(test_cuda_simple_argmax<RowMajor>());
|
|
CALL_SUBTEST_1(test_cuda_simple_argmax<ColMajor>());
|
|
CALL_SUBTEST_2(test_cuda_argmax_dim<RowMajor>());
|
|
CALL_SUBTEST_2(test_cuda_argmax_dim<ColMajor>());
|
|
CALL_SUBTEST_3(test_cuda_argmin_dim<RowMajor>());
|
|
CALL_SUBTEST_3(test_cuda_argmin_dim<ColMajor>());
|
|
}
|