mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-06 14:14:46 +08:00
88 lines
2.9 KiB
C++
88 lines
2.9 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2010-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "lapack_common.h"
|
|
#include <Eigen/Cholesky>
|
|
|
|
// POTRF computes the Cholesky factorization of a real symmetric positive definite matrix A.
|
|
EIGEN_LAPACK_FUNC(potrf,(char* uplo, int *n, RealScalar *pa, int *lda, int *info))
|
|
{
|
|
*info = 0;
|
|
if(UPLO(*uplo)==INVALID) *info = -1;
|
|
else if(*n<0) *info = -2;
|
|
else if(*lda<std::max(1,*n)) *info = -4;
|
|
if(*info!=0)
|
|
{
|
|
int e = -*info;
|
|
return xerbla_(SCALAR_SUFFIX_UP"POTRF", &e, 6);
|
|
}
|
|
|
|
Scalar* a = reinterpret_cast<Scalar*>(pa);
|
|
MatrixType A(a,*n,*n,*lda);
|
|
int ret;
|
|
if(UPLO(*uplo)==UP) ret = internal::llt_inplace<Upper>::blocked(A);
|
|
else ret = internal::llt_inplace<Lower>::blocked(A);
|
|
|
|
if(ret>=0)
|
|
*info = ret+1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
// POTRS solves a system of linear equations A*X = B with a symmetric
|
|
// positive definite matrix A using the Cholesky factorization
|
|
// A = U**T*U or A = L*L**T computed by DPOTRF.
|
|
EIGEN_LAPACK_FUNC(potrs,(char* uplo, int *n, int *nrhs, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, int *info))
|
|
{
|
|
*info = 0;
|
|
if(UPLO(*uplo)==INVALID) *info = -1;
|
|
else if(*n<0) *info = -2;
|
|
else if(*nrhs<0) *info = -3;
|
|
else if(*lda<std::max(1,*n)) *info = -5;
|
|
else if(*ldb<std::max(1,*n)) *info = -7;
|
|
if(*info!=0)
|
|
{
|
|
int e = -*info;
|
|
return xerbla_(SCALAR_SUFFIX_UP"POTRS", &e, 6);
|
|
}
|
|
|
|
Scalar* a = reinterpret_cast<Scalar*>(pa);
|
|
Scalar* b = reinterpret_cast<Scalar*>(pb);
|
|
MatrixType A(a,*n,*n,*lda);
|
|
MatrixType B(b,*n,*nrhs,*ldb);
|
|
|
|
if(UPLO(*uplo)==UP)
|
|
{
|
|
A.triangularView<Upper>().adjoint().solveInPlace(B);
|
|
A.triangularView<Upper>().solveInPlace(B);
|
|
}
|
|
else
|
|
{
|
|
A.triangularView<Lower>().solveInPlace(B);
|
|
A.triangularView<Lower>().adjoint().solveInPlace(B);
|
|
}
|
|
|
|
return 0;
|
|
}
|