mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-06 14:14:46 +08:00
61 lines
1.8 KiB
C++
61 lines
1.8 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#define EIGEN_NO_STATIC_ASSERT
|
|
#include "product.h"
|
|
#include <Eigen/LU>
|
|
|
|
// regression test for bug 447
|
|
void product1x1()
|
|
{
|
|
Matrix<float,1,3> matAstatic;
|
|
Matrix<float,3,1> matBstatic;
|
|
matAstatic.setRandom();
|
|
matBstatic.setRandom();
|
|
VERIFY_IS_APPROX( (matAstatic * matBstatic).coeff(0,0),
|
|
matAstatic.cwiseProduct(matBstatic.transpose()).sum() );
|
|
|
|
MatrixXf matAdynamic(1,3);
|
|
MatrixXf matBdynamic(3,1);
|
|
matAdynamic.setRandom();
|
|
matBdynamic.setRandom();
|
|
VERIFY_IS_APPROX( (matAdynamic * matBdynamic).coeff(0,0),
|
|
matAdynamic.cwiseProduct(matBdynamic.transpose()).sum() );
|
|
}
|
|
|
|
|
|
void test_product_small()
|
|
{
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1( product(Matrix<float, 3, 2>()) );
|
|
CALL_SUBTEST_2( product(Matrix<int, 3, 5>()) );
|
|
CALL_SUBTEST_3( product(Matrix3d()) );
|
|
CALL_SUBTEST_4( product(Matrix4d()) );
|
|
CALL_SUBTEST_5( product(Matrix4f()) );
|
|
CALL_SUBTEST_6( product1x1() );
|
|
}
|
|
|
|
#ifdef EIGEN_TEST_PART_6
|
|
{
|
|
// test compilation of (outer_product) * vector
|
|
Vector3f v = Vector3f::Random();
|
|
VERIFY_IS_APPROX( (v * v.transpose()) * v, (v * v.transpose()).eval() * v);
|
|
}
|
|
|
|
{
|
|
// regression test for pull-request #93
|
|
Eigen::Matrix<double, 1, 1> A; A.setRandom();
|
|
Eigen::Matrix<double, 18, 1> B; B.setRandom();
|
|
Eigen::Matrix<double, 1, 18> C; C.setRandom();
|
|
VERIFY_IS_APPROX(B * A.inverse(), B * A.inverse()[0]);
|
|
VERIFY_IS_APPROX(A.inverse() * C, A.inverse()[0] * C);
|
|
}
|
|
#endif
|
|
}
|