mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-06 14:14:46 +08:00
f67b19a884
From 68d431b4c14ad60a778ee93c1f59ecc4b931950e Mon Sep 17 00:00:00 2001 Found via `codespell -q 3 -I ../eigen-word-whitelist.txt` where the whitelists consists of: ``` als ans cas dum lastr lowd nd overfl pres preverse substraction te uint whch ``` --- CMakeLists.txt | 26 +++++++++---------- Eigen/src/Core/GenericPacketMath.h | 2 +- Eigen/src/SparseLU/SparseLU.h | 2 +- bench/bench_norm.cpp | 2 +- doc/HiPerformance.dox | 2 +- doc/QuickStartGuide.dox | 2 +- .../Eigen/CXX11/src/Tensor/TensorChipping.h | 6 ++--- .../Eigen/CXX11/src/Tensor/TensorDeviceGpu.h | 2 +- .../src/Tensor/TensorForwardDeclarations.h | 4 +-- .../src/Tensor/TensorGpuHipCudaDefines.h | 2 +- .../Eigen/CXX11/src/Tensor/TensorReduction.h | 2 +- .../CXX11/src/Tensor/TensorReductionGpu.h | 2 +- .../test/cxx11_tensor_concatenation.cpp | 2 +- unsupported/test/cxx11_tensor_executor.cpp | 2 +- 14 files changed, 29 insertions(+), 29 deletions(-)
144 lines
4.5 KiB
C++
144 lines
4.5 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include "main.h"
|
|
|
|
#include <Eigen/CXX11/Tensor>
|
|
|
|
using Eigen::Tensor;
|
|
|
|
template<int DataLayout>
|
|
static void test_dimension_failures()
|
|
{
|
|
Tensor<int, 3, DataLayout> left(2, 3, 1);
|
|
Tensor<int, 3, DataLayout> right(3, 3, 1);
|
|
left.setRandom();
|
|
right.setRandom();
|
|
|
|
// Okay; other dimensions are equal.
|
|
Tensor<int, 3, DataLayout> concatenation = left.concatenate(right, 0);
|
|
|
|
// Dimension mismatches.
|
|
VERIFY_RAISES_ASSERT(concatenation = left.concatenate(right, 1));
|
|
VERIFY_RAISES_ASSERT(concatenation = left.concatenate(right, 2));
|
|
|
|
// Axis > NumDims or < 0.
|
|
VERIFY_RAISES_ASSERT(concatenation = left.concatenate(right, 3));
|
|
VERIFY_RAISES_ASSERT(concatenation = left.concatenate(right, -1));
|
|
}
|
|
|
|
template<int DataLayout>
|
|
static void test_static_dimension_failure()
|
|
{
|
|
Tensor<int, 2, DataLayout> left(2, 3);
|
|
Tensor<int, 3, DataLayout> right(2, 3, 1);
|
|
|
|
#ifdef CXX11_TENSOR_CONCATENATION_STATIC_DIMENSION_FAILURE
|
|
// Technically compatible, but we static assert that the inputs have same
|
|
// NumDims.
|
|
Tensor<int, 3, DataLayout> concatenation = left.concatenate(right, 0);
|
|
#endif
|
|
|
|
// This can be worked around in this case.
|
|
Tensor<int, 3, DataLayout> concatenation = left
|
|
.reshape(Tensor<int, 3>::Dimensions(2, 3, 1))
|
|
.concatenate(right, 0);
|
|
Tensor<int, 2, DataLayout> alternative = left
|
|
// Clang compiler break with {{{}}} with an ambiguous error on copy constructor
|
|
// the variadic DSize constructor added for #ifndef EIGEN_EMULATE_CXX11_META_H.
|
|
// Solution:
|
|
// either the code should change to
|
|
// Tensor<int, 2>::Dimensions{{2, 3}}
|
|
// or Tensor<int, 2>::Dimensions{Tensor<int, 2>::Dimensions{{2, 3}}}
|
|
.concatenate(right.reshape(Tensor<int, 2>::Dimensions(2, 3)), 0);
|
|
}
|
|
|
|
template<int DataLayout>
|
|
static void test_simple_concatenation()
|
|
{
|
|
Tensor<int, 3, DataLayout> left(2, 3, 1);
|
|
Tensor<int, 3, DataLayout> right(2, 3, 1);
|
|
left.setRandom();
|
|
right.setRandom();
|
|
|
|
Tensor<int, 3, DataLayout> concatenation = left.concatenate(right, 0);
|
|
VERIFY_IS_EQUAL(concatenation.dimension(0), 4);
|
|
VERIFY_IS_EQUAL(concatenation.dimension(1), 3);
|
|
VERIFY_IS_EQUAL(concatenation.dimension(2), 1);
|
|
for (int j = 0; j < 3; ++j) {
|
|
for (int i = 0; i < 2; ++i) {
|
|
VERIFY_IS_EQUAL(concatenation(i, j, 0), left(i, j, 0));
|
|
}
|
|
for (int i = 2; i < 4; ++i) {
|
|
VERIFY_IS_EQUAL(concatenation(i, j, 0), right(i - 2, j, 0));
|
|
}
|
|
}
|
|
|
|
concatenation = left.concatenate(right, 1);
|
|
VERIFY_IS_EQUAL(concatenation.dimension(0), 2);
|
|
VERIFY_IS_EQUAL(concatenation.dimension(1), 6);
|
|
VERIFY_IS_EQUAL(concatenation.dimension(2), 1);
|
|
for (int i = 0; i < 2; ++i) {
|
|
for (int j = 0; j < 3; ++j) {
|
|
VERIFY_IS_EQUAL(concatenation(i, j, 0), left(i, j, 0));
|
|
}
|
|
for (int j = 3; j < 6; ++j) {
|
|
VERIFY_IS_EQUAL(concatenation(i, j, 0), right(i, j - 3, 0));
|
|
}
|
|
}
|
|
|
|
concatenation = left.concatenate(right, 2);
|
|
VERIFY_IS_EQUAL(concatenation.dimension(0), 2);
|
|
VERIFY_IS_EQUAL(concatenation.dimension(1), 3);
|
|
VERIFY_IS_EQUAL(concatenation.dimension(2), 2);
|
|
for (int i = 0; i < 2; ++i) {
|
|
for (int j = 0; j < 3; ++j) {
|
|
VERIFY_IS_EQUAL(concatenation(i, j, 0), left(i, j, 0));
|
|
VERIFY_IS_EQUAL(concatenation(i, j, 1), right(i, j, 0));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// TODO(phli): Add test once we have a real vectorized implementation.
|
|
// static void test_vectorized_concatenation() {}
|
|
|
|
static void test_concatenation_as_lvalue()
|
|
{
|
|
Tensor<int, 2> t1(2, 3);
|
|
Tensor<int, 2> t2(2, 3);
|
|
t1.setRandom();
|
|
t2.setRandom();
|
|
|
|
Tensor<int, 2> result(4, 3);
|
|
result.setRandom();
|
|
t1.concatenate(t2, 0) = result;
|
|
|
|
for (int i = 0; i < 2; ++i) {
|
|
for (int j = 0; j < 3; ++j) {
|
|
VERIFY_IS_EQUAL(t1(i, j), result(i, j));
|
|
VERIFY_IS_EQUAL(t2(i, j), result(i+2, j));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
EIGEN_DECLARE_TEST(cxx11_tensor_concatenation)
|
|
{
|
|
CALL_SUBTEST(test_dimension_failures<ColMajor>());
|
|
CALL_SUBTEST(test_dimension_failures<RowMajor>());
|
|
CALL_SUBTEST(test_static_dimension_failure<ColMajor>());
|
|
CALL_SUBTEST(test_static_dimension_failure<RowMajor>());
|
|
CALL_SUBTEST(test_simple_concatenation<ColMajor>());
|
|
CALL_SUBTEST(test_simple_concatenation<RowMajor>());
|
|
// CALL_SUBTEST(test_vectorized_concatenation());
|
|
CALL_SUBTEST(test_concatenation_as_lvalue());
|
|
|
|
}
|