mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-27 07:29:52 +08:00
155 lines
5.1 KiB
C++
155 lines
5.1 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include "matrix_functions.h"
|
|
|
|
template<typename T>
|
|
void test2dRotation(double tol)
|
|
{
|
|
Matrix<T,2,2> A, B, C;
|
|
T angle, c, s;
|
|
|
|
A << 0, 1, -1, 0;
|
|
for (int i = 0; i <= 20; i++) {
|
|
angle = pow(10, (i-10) / 5.);
|
|
c = std::cos(angle);
|
|
s = std::sin(angle);
|
|
B << c, s, -s, c;
|
|
|
|
C = A.pow(std::ldexp(angle, 1) / M_PI);
|
|
std::cout << "test2dRotation: i = " << i << " error powerm = " << relerr(C, B) << '\n';
|
|
VERIFY(C.isApprox(B, T(tol)));
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
void test2dHyperbolicRotation(double tol)
|
|
{
|
|
Matrix<std::complex<T>,2,2> A, B, C;
|
|
T angle, ch = std::cosh(1);
|
|
std::complex<T> ish(0, std::sinh(1));
|
|
|
|
A << ch, ish, -ish, ch;
|
|
for (int i = 0; i <= 20; i++) {
|
|
angle = std::ldexp(T(i-10), -1);
|
|
ch = std::cosh(angle);
|
|
ish = std::complex<T>(0, std::sinh(angle));
|
|
B << ch, ish, -ish, ch;
|
|
|
|
C = A.pow(angle);
|
|
std::cout << "test2dHyperbolicRotation: i = " << i << " error powerm = " << relerr(C, B) << '\n';
|
|
VERIFY(C.isApprox(B, T(tol)));
|
|
}
|
|
}
|
|
|
|
template<typename MatrixType>
|
|
void testExponentLaws(const MatrixType& m, double tol)
|
|
{
|
|
typedef typename MatrixType::RealScalar RealScalar;
|
|
MatrixType m1, m2, m3, m4, m5;
|
|
RealScalar x, y;
|
|
|
|
for (int i = 0; i < g_repeat; i++) {
|
|
generateTestMatrix<MatrixType>::run(m1, m.rows());
|
|
x = internal::random<RealScalar>();
|
|
y = internal::random<RealScalar>();
|
|
m2 = m1.pow(x);
|
|
m3 = m1.pow(y);
|
|
|
|
m4 = m1.pow(x + y);
|
|
m5.noalias() = m2 * m3;
|
|
std::cout << "testExponentLaws: error powerm = " << relerr(m4, m5);
|
|
VERIFY(m4.isApprox(m5, RealScalar(tol)));
|
|
|
|
if (!NumTraits<typename MatrixType::Scalar>::IsComplex) {
|
|
m4 = m1.pow(x * y);
|
|
m5 = m2.pow(y);
|
|
std::cout << " " << relerr(m4, m5);
|
|
VERIFY(m4.isApprox(m5, RealScalar(tol)));
|
|
}
|
|
|
|
m4 = (std::abs(x) * m1).pow(y);
|
|
m5 = std::pow(std::abs(x), y) * m3;
|
|
std::cout << " " << relerr(m4, m5) << '\n';
|
|
VERIFY(m4.isApprox(m5, RealScalar(tol)));
|
|
}
|
|
}
|
|
|
|
template<typename MatrixType, typename VectorType>
|
|
void testMatrixVectorProduct(const MatrixType& m, const VectorType& v, double tol)
|
|
{
|
|
typedef typename MatrixType::RealScalar RealScalar;
|
|
MatrixType m1;
|
|
VectorType v1, v2, v3;
|
|
RealScalar p;
|
|
|
|
for (int i = 0; i < g_repeat; i++) {
|
|
generateTestMatrix<MatrixType>::run(m1, m.rows());
|
|
v1 = VectorType::Random(v.rows(), v.cols());
|
|
p = internal::random<RealScalar>();
|
|
|
|
v2.noalias() = m1.pow(p).eval() * v1;
|
|
v1 = m1.pow(p) * v1;
|
|
std::cout << "testMatrixVectorProduct: error powerm = " << relerr(v2, v1) << '\n';
|
|
VERIFY(v2.isApprox(v1, RealScalar(tol)));
|
|
}
|
|
}
|
|
|
|
template<typename MatrixType>
|
|
void testAliasing(const MatrixType& m)
|
|
{
|
|
typedef typename MatrixType::RealScalar RealScalar;
|
|
MatrixType m1, m2;
|
|
RealScalar p;
|
|
|
|
for (int i = 0; i < g_repeat; i++) {
|
|
generateTestMatrix<MatrixType>::run(m1, m.rows());
|
|
p = internal::random<RealScalar>();
|
|
|
|
m2 = m1.pow(p);
|
|
m1 = m1.pow(p);
|
|
VERIFY(m1 == m2);
|
|
}
|
|
}
|
|
|
|
void test_matrix_power()
|
|
{
|
|
CALL_SUBTEST_2(test2dRotation<double>(1e-13));
|
|
CALL_SUBTEST_1(test2dRotation<float>(2e-5)); // was 1e-5, relaxed for clang 2.8 / linux / x86-64
|
|
CALL_SUBTEST_9(test2dRotation<long double>(1e-13));
|
|
CALL_SUBTEST_2(test2dHyperbolicRotation<double>(1e-14));
|
|
CALL_SUBTEST_1(test2dHyperbolicRotation<float>(1e-5));
|
|
CALL_SUBTEST_9(test2dHyperbolicRotation<long double>(1e-14));
|
|
|
|
CALL_SUBTEST_2(testExponentLaws(Matrix2d(), 1e-13));
|
|
CALL_SUBTEST_7(testExponentLaws(Matrix<double,3,3,RowMajor>(), 1e-13));
|
|
CALL_SUBTEST_3(testExponentLaws(Matrix4cd(), 1e-13));
|
|
CALL_SUBTEST_4(testExponentLaws(MatrixXd(8,8), 1e-13));
|
|
CALL_SUBTEST_1(testExponentLaws(Matrix2f(), 1e-4));
|
|
CALL_SUBTEST_5(testExponentLaws(Matrix3cf(), 1e-4));
|
|
CALL_SUBTEST_8(testExponentLaws(Matrix4f(), 1e-4));
|
|
CALL_SUBTEST_6(testExponentLaws(MatrixXf(8,8), 1e-4));
|
|
|
|
CALL_SUBTEST_2(testMatrixVectorProduct(Matrix2d(), Vector2d(), 1e-13));
|
|
CALL_SUBTEST_7(testMatrixVectorProduct(Matrix<double,3,3,RowMajor>(), Vector3d(), 1e-13));
|
|
CALL_SUBTEST_3(testMatrixVectorProduct(Matrix4cd(), Vector4cd(), 1e-13));
|
|
CALL_SUBTEST_4(testMatrixVectorProduct(MatrixXd(8,8), MatrixXd(8,2), 1e-13));
|
|
CALL_SUBTEST_1(testMatrixVectorProduct(Matrix2f(), Vector2f(), 1e-4));
|
|
CALL_SUBTEST_5(testMatrixVectorProduct(Matrix3cf(), Vector3cf(), 1e-4));
|
|
CALL_SUBTEST_8(testMatrixVectorProduct(Matrix4f(), Vector4f(), 1e-4));
|
|
CALL_SUBTEST_6(testMatrixVectorProduct(MatrixXf(8,8), VectorXf(8), 1e-4));
|
|
CALL_SUBTEST_9(testMatrixVectorProduct(Matrix<long double,Dynamic,Dynamic>(7,7), Matrix<long double,7,9>(), 1e-13));
|
|
|
|
CALL_SUBTEST_7(testAliasing(Matrix<double,3,3,RowMajor>()));
|
|
CALL_SUBTEST_3(testAliasing(Matrix4cd()));
|
|
CALL_SUBTEST_4(testAliasing(MatrixXd(8,8)));
|
|
CALL_SUBTEST_5(testAliasing(Matrix3cf()));
|
|
CALL_SUBTEST_6(testAliasing(MatrixXf(8,8)));
|
|
}
|