mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-21 07:19:46 +08:00
432 lines
22 KiB
C++
432 lines
22 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "common.h"
|
|
|
|
int EIGEN_BLAS_FUNC(gemm)(char *opa, char *opb, int *m, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc)
|
|
{
|
|
// std::cerr << "in gemm " << *opa << " " << *opb << " " << *m << " " << *n << " " << *k << " " << *lda << " " << *ldb << " " << *ldc << " " << *palpha << " " << *pbeta << "\n";
|
|
typedef void (*functype)(int, int, int, const Scalar *, int, const Scalar *, int, Scalar *, int, Scalar, Eigen::GemmParallelInfo<Scalar>*);
|
|
static functype func[12];
|
|
|
|
static bool init = false;
|
|
if(!init)
|
|
{
|
|
for(int k=0; k<12; ++k)
|
|
func[k] = 0;
|
|
func[NOTR | (NOTR << 2)] = (ei_general_matrix_matrix_product<Scalar,ColMajor,false,ColMajor,false,ColMajor>::run);
|
|
func[TR | (NOTR << 2)] = (ei_general_matrix_matrix_product<Scalar,RowMajor,false,ColMajor,false,ColMajor>::run);
|
|
func[ADJ | (NOTR << 2)] = (ei_general_matrix_matrix_product<Scalar,RowMajor,Conj, ColMajor,false,ColMajor>::run);
|
|
func[NOTR | (TR << 2)] = (ei_general_matrix_matrix_product<Scalar,ColMajor,false,RowMajor,false,ColMajor>::run);
|
|
func[TR | (TR << 2)] = (ei_general_matrix_matrix_product<Scalar,RowMajor,false,RowMajor,false,ColMajor>::run);
|
|
func[ADJ | (TR << 2)] = (ei_general_matrix_matrix_product<Scalar,RowMajor,Conj, RowMajor,false,ColMajor>::run);
|
|
func[NOTR | (ADJ << 2)] = (ei_general_matrix_matrix_product<Scalar,ColMajor,false,RowMajor,Conj, ColMajor>::run);
|
|
func[TR | (ADJ << 2)] = (ei_general_matrix_matrix_product<Scalar,RowMajor,false,RowMajor,Conj, ColMajor>::run);
|
|
func[ADJ | (ADJ << 2)] = (ei_general_matrix_matrix_product<Scalar,RowMajor,Conj, RowMajor,Conj, ColMajor>::run);
|
|
init = true;
|
|
}
|
|
|
|
Scalar* a = reinterpret_cast<Scalar*>(pa);
|
|
Scalar* b = reinterpret_cast<Scalar*>(pb);
|
|
Scalar* c = reinterpret_cast<Scalar*>(pc);
|
|
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
|
|
Scalar beta = *reinterpret_cast<Scalar*>(pbeta);
|
|
|
|
int code = OP(*opa) | (OP(*opb) << 2);
|
|
if(code>=12 || func[code]==0 || (*m<0) || (*n<0) || (*k<0))
|
|
{
|
|
int info = 1;
|
|
xerbla_("GEMM", &info, 4);
|
|
return 0;
|
|
}
|
|
|
|
if(beta!=Scalar(1))
|
|
if(beta==Scalar(0))
|
|
matrix(c, *m, *n, *ldc).setZero();
|
|
else
|
|
matrix(c, *m, *n, *ldc) *= beta;
|
|
|
|
func[code](*m, *n, *k, a, *lda, b, *ldb, c, *ldc, alpha, 0);
|
|
return 0;
|
|
}
|
|
|
|
int EIGEN_BLAS_FUNC(trsm)(char *side, char *uplo, char *opa, char *diag, int *m, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb)
|
|
{
|
|
// std::cerr << "in trsm " << *side << " " << *uplo << " " << *opa << " " << *diag << " " << *m << "," << *n << " " << *palpha << " " << *lda << " " << *ldb<< "\n";
|
|
typedef void (*functype)(int, int, const Scalar *, int, Scalar *, int);
|
|
static functype func[32];
|
|
|
|
static bool init = false;
|
|
if(!init)
|
|
{
|
|
for(int k=0; k<32; ++k)
|
|
func[k] = 0;
|
|
|
|
func[NOTR | (LEFT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheLeft, Upper|0, false,ColMajor,ColMajor>::run);
|
|
func[TR | (LEFT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheLeft, Lower|0, false,RowMajor,ColMajor>::run);
|
|
func[ADJ | (LEFT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheLeft, Lower|0, Conj, RowMajor,ColMajor>::run);
|
|
|
|
func[NOTR | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheRight,Upper|0, false,ColMajor,ColMajor>::run);
|
|
func[TR | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheRight,Lower|0, false,RowMajor,ColMajor>::run);
|
|
func[ADJ | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheRight,Lower|0, Conj, RowMajor,ColMajor>::run);
|
|
|
|
func[NOTR | (LEFT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheLeft, Lower|0, false,ColMajor,ColMajor>::run);
|
|
func[TR | (LEFT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheLeft, Upper|0, false,RowMajor,ColMajor>::run);
|
|
func[ADJ | (LEFT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheLeft, Upper|0, Conj, RowMajor,ColMajor>::run);
|
|
|
|
func[NOTR | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheRight,Lower|0, false,ColMajor,ColMajor>::run);
|
|
func[TR | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheRight,Upper|0, false,RowMajor,ColMajor>::run);
|
|
func[ADJ | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheRight,Upper|0, Conj, RowMajor,ColMajor>::run);
|
|
|
|
|
|
func[NOTR | (LEFT << 2) | (UP << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheLeft, Upper|UnitDiag,false,ColMajor,ColMajor>::run);
|
|
func[TR | (LEFT << 2) | (UP << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheLeft, Lower|UnitDiag,false,RowMajor,ColMajor>::run);
|
|
func[ADJ | (LEFT << 2) | (UP << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheLeft, Lower|UnitDiag,Conj, RowMajor,ColMajor>::run);
|
|
|
|
func[NOTR | (RIGHT << 2) | (UP << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheRight,Upper|UnitDiag,false,ColMajor,ColMajor>::run);
|
|
func[TR | (RIGHT << 2) | (UP << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheRight,Lower|UnitDiag,false,RowMajor,ColMajor>::run);
|
|
func[ADJ | (RIGHT << 2) | (UP << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheRight,Lower|UnitDiag,Conj, RowMajor,ColMajor>::run);
|
|
|
|
func[NOTR | (LEFT << 2) | (LO << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheLeft, Lower|UnitDiag,false,ColMajor,ColMajor>::run);
|
|
func[TR | (LEFT << 2) | (LO << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheLeft, Upper|UnitDiag,false,RowMajor,ColMajor>::run);
|
|
func[ADJ | (LEFT << 2) | (LO << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheLeft, Upper|UnitDiag,Conj, RowMajor,ColMajor>::run);
|
|
|
|
func[NOTR | (RIGHT << 2) | (LO << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheRight,Lower|UnitDiag,false,ColMajor,ColMajor>::run);
|
|
func[TR | (RIGHT << 2) | (LO << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheRight,Upper|UnitDiag,false,RowMajor,ColMajor>::run);
|
|
func[ADJ | (RIGHT << 2) | (LO << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheRight,Upper|UnitDiag,Conj, RowMajor,ColMajor>::run);
|
|
|
|
init = true;
|
|
}
|
|
|
|
Scalar* a = reinterpret_cast<Scalar*>(pa);
|
|
Scalar* b = reinterpret_cast<Scalar*>(pb);
|
|
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
|
|
|
|
int code = OP(*opa) | (SIDE(*side) << 2) | (UPLO(*uplo) << 3) | (DIAG(*diag) << 4);
|
|
if(code>=32 || func[code]==0 || *m<0 || *n <0)
|
|
{
|
|
int info=1;
|
|
xerbla_("TRSM",&info,4);
|
|
return 0;
|
|
}
|
|
|
|
if(SIDE(*side)==LEFT)
|
|
func[code](*m, *n, a, *lda, b, *ldb);
|
|
else
|
|
func[code](*n, *m, a, *lda, b, *ldb);
|
|
|
|
if(alpha!=Scalar(1))
|
|
matrix(b,*m,*n,*ldb) *= alpha;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
// b = alpha*op(a)*b for side = 'L'or'l'
|
|
// b = alpha*b*op(a) for side = 'R'or'r'
|
|
int EIGEN_BLAS_FUNC(trmm)(char *side, char *uplo, char *opa, char *diag, int *m, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb)
|
|
{
|
|
// std::cerr << "in trmm " << *side << " " << *uplo << " " << *opa << " " << *diag << " " << *m << " " << *n << " " << *lda << " " << *ldb << " " << *palpha << "\n";
|
|
typedef void (*functype)(int, int, const Scalar *, int, const Scalar *, int, Scalar *, int, Scalar);
|
|
static functype func[32];
|
|
static bool init = false;
|
|
if(!init)
|
|
{
|
|
for(int k=0; k<32; ++k)
|
|
func[k] = 0;
|
|
|
|
func[NOTR | (LEFT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Upper|0, true, ColMajor,false,ColMajor,false,ColMajor>::run);
|
|
func[TR | (LEFT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Lower|0, true, RowMajor,false,ColMajor,false,ColMajor>::run);
|
|
func[ADJ | (LEFT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Lower|0, true, RowMajor,Conj, ColMajor,false,ColMajor>::run);
|
|
|
|
func[NOTR | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Upper|0, false,ColMajor,false,ColMajor,false,ColMajor>::run);
|
|
func[TR | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Lower|0, false,ColMajor,false,RowMajor,false,ColMajor>::run);
|
|
func[ADJ | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Lower|0, false,ColMajor,false,RowMajor,Conj, ColMajor>::run);
|
|
|
|
func[NOTR | (LEFT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Lower|0, true, ColMajor,false,ColMajor,false,ColMajor>::run);
|
|
func[TR | (LEFT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Upper|0, true, RowMajor,false,ColMajor,false,ColMajor>::run);
|
|
func[ADJ | (LEFT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Upper|0, true, RowMajor,Conj, ColMajor,false,ColMajor>::run);
|
|
|
|
func[NOTR | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Lower|0, false,ColMajor,false,ColMajor,false,ColMajor>::run);
|
|
func[TR | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Upper|0, false,ColMajor,false,RowMajor,false,ColMajor>::run);
|
|
func[ADJ | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Upper|0, false,ColMajor,false,RowMajor,Conj, ColMajor>::run);
|
|
|
|
func[NOTR | (LEFT << 2) | (UP << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Upper|UnitDiag,true, ColMajor,false,ColMajor,false,ColMajor>::run);
|
|
func[TR | (LEFT << 2) | (UP << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Lower|UnitDiag,true, RowMajor,false,ColMajor,false,ColMajor>::run);
|
|
func[ADJ | (LEFT << 2) | (UP << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Lower|UnitDiag,true, RowMajor,Conj, ColMajor,false,ColMajor>::run);
|
|
|
|
func[NOTR | (RIGHT << 2) | (UP << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Upper|UnitDiag,false,ColMajor,false,ColMajor,false,ColMajor>::run);
|
|
func[TR | (RIGHT << 2) | (UP << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Lower|UnitDiag,false,ColMajor,false,RowMajor,false,ColMajor>::run);
|
|
func[ADJ | (RIGHT << 2) | (UP << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Lower|UnitDiag,false,ColMajor,false,RowMajor,Conj, ColMajor>::run);
|
|
|
|
func[NOTR | (LEFT << 2) | (LO << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Lower|UnitDiag,true, ColMajor,false,ColMajor,false,ColMajor>::run);
|
|
func[TR | (LEFT << 2) | (LO << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Upper|UnitDiag,true, RowMajor,false,ColMajor,false,ColMajor>::run);
|
|
func[ADJ | (LEFT << 2) | (LO << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Upper|UnitDiag,true, RowMajor,Conj, ColMajor,false,ColMajor>::run);
|
|
|
|
func[NOTR | (RIGHT << 2) | (LO << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Lower|UnitDiag,false,ColMajor,false,ColMajor,false,ColMajor>::run);
|
|
func[TR | (RIGHT << 2) | (LO << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Upper|UnitDiag,false,ColMajor,false,RowMajor,false,ColMajor>::run);
|
|
func[ADJ | (RIGHT << 2) | (LO << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Upper|UnitDiag,false,ColMajor,false,RowMajor,Conj, ColMajor>::run);
|
|
|
|
init = true;
|
|
}
|
|
|
|
Scalar* a = reinterpret_cast<Scalar*>(pa);
|
|
Scalar* b = reinterpret_cast<Scalar*>(pb);
|
|
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
|
|
|
|
int code = OP(*opa) | (SIDE(*side) << 2) | (UPLO(*uplo) << 3) | (DIAG(*diag) << 4);
|
|
if(code>=32 || func[code]==0 || *m<0 || *n <0)
|
|
{
|
|
int info=1;
|
|
xerbla_("TRMM",&info,4);
|
|
return 0;
|
|
}
|
|
|
|
// FIXME find a way to avoid this copy
|
|
Matrix<Scalar,Dynamic,Dynamic> tmp = matrix(b,*m,*n,*ldb);
|
|
matrix(b,*m,*n,*ldb).setZero();
|
|
|
|
if(SIDE(*side)==LEFT)
|
|
func[code](*m, *n, a, *lda, tmp.data(), tmp.outerStride(), b, *ldb, alpha);
|
|
else
|
|
func[code](*n, *m, tmp.data(), tmp.outerStride(), a, *lda, b, *ldb, alpha);
|
|
return 1;
|
|
}
|
|
|
|
// c = alpha*a*b + beta*c for side = 'L'or'l'
|
|
// c = alpha*b*a + beta*c for side = 'R'or'r
|
|
int EIGEN_BLAS_FUNC(symm)(char *side, char *uplo, int *m, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc)
|
|
{
|
|
// std::cerr << "in symm " << *side << " " << *uplo << " " << *m << "x" << *n << " lda:" << *lda << " ldb:" << *ldb << " ldc:" << *ldc << " alpha:" << *palpha << " beta:" << *pbeta << "\n";
|
|
Scalar* a = reinterpret_cast<Scalar*>(pa);
|
|
Scalar* b = reinterpret_cast<Scalar*>(pb);
|
|
Scalar* c = reinterpret_cast<Scalar*>(pc);
|
|
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
|
|
Scalar beta = *reinterpret_cast<Scalar*>(pbeta);
|
|
|
|
if(*m<0 || *n<0)
|
|
{
|
|
int info=1;
|
|
xerbla_("SYMM",&info,4);
|
|
return 0;
|
|
}
|
|
|
|
if(beta!=Scalar(1))
|
|
if(beta==Scalar(0)) matrix(c, *m, *n, *ldc).setZero();
|
|
else matrix(c, *m, *n, *ldc) *= beta;
|
|
|
|
if(SIDE(*side)==LEFT)
|
|
if(UPLO(*uplo)==UP) ei_product_selfadjoint_matrix<Scalar, RowMajor,true,false, ColMajor,false,false, ColMajor>::run(*m, *n, a, *lda, b, *ldb, c, *ldc, alpha);
|
|
else if(UPLO(*uplo)==LO) ei_product_selfadjoint_matrix<Scalar, ColMajor,true,false, ColMajor,false,false, ColMajor>::run(*m, *n, a, *lda, b, *ldb, c, *ldc, alpha);
|
|
else return 0;
|
|
else if(SIDE(*side)==RIGHT)
|
|
if(UPLO(*uplo)==UP) ei_product_selfadjoint_matrix<Scalar, ColMajor,false,false, RowMajor,true,false, ColMajor>::run(*m, *n, b, *ldb, a, *lda, c, *ldc, alpha);
|
|
else if(UPLO(*uplo)==LO) ei_product_selfadjoint_matrix<Scalar, ColMajor,false,false, ColMajor,true,false, ColMajor>::run(*m, *n, b, *ldb, a, *lda, c, *ldc, alpha);
|
|
else return 0;
|
|
else
|
|
return 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
// c = alpha*a*a' + beta*c for op = 'N'or'n'
|
|
// c = alpha*a'*a + beta*c for op = 'T'or't','C'or'c'
|
|
int EIGEN_BLAS_FUNC(syrk)(char *uplo, char *op, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pbeta, RealScalar *pc, int *ldc)
|
|
{
|
|
// std::cerr << "in syrk " << *uplo << " " << *op << " " << *n << " " << *k << " " << *palpha << " " << *lda << " " << *pbeta << " " << *ldc << "\n";
|
|
typedef void (*functype)(int, int, const Scalar *, int, Scalar *, int, Scalar);
|
|
static functype func[8];
|
|
|
|
static bool init = false;
|
|
if(!init)
|
|
{
|
|
for(int k=0; k<8; ++k)
|
|
func[k] = 0;
|
|
|
|
func[NOTR | (UP << 2)] = (ei_selfadjoint_product<Scalar,ColMajor,ColMajor,true, Upper>::run);
|
|
func[TR | (UP << 2)] = (ei_selfadjoint_product<Scalar,RowMajor,ColMajor,false,Upper>::run);
|
|
func[ADJ | (UP << 2)] = (ei_selfadjoint_product<Scalar,RowMajor,ColMajor,false,Upper>::run);
|
|
|
|
func[NOTR | (LO << 2)] = (ei_selfadjoint_product<Scalar,ColMajor,ColMajor,true, Lower>::run);
|
|
func[TR | (LO << 2)] = (ei_selfadjoint_product<Scalar,RowMajor,ColMajor,false,Lower>::run);
|
|
func[ADJ | (LO << 2)] = (ei_selfadjoint_product<Scalar,RowMajor,ColMajor,false,Lower>::run);
|
|
|
|
init = true;
|
|
}
|
|
|
|
Scalar* a = reinterpret_cast<Scalar*>(pa);
|
|
Scalar* c = reinterpret_cast<Scalar*>(pc);
|
|
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
|
|
Scalar beta = *reinterpret_cast<Scalar*>(pbeta);
|
|
|
|
int code = OP(*op) | (UPLO(*uplo) << 2);
|
|
if(code>=8 || func[code]==0 || *n<0 || *k<0)
|
|
{
|
|
int info=1;
|
|
xerbla_("SYRK",&info,4);
|
|
return 0;
|
|
}
|
|
|
|
if(beta!=Scalar(1))
|
|
if(UPLO(*uplo)==UP) matrix(c, *n, *n, *ldc).triangularView<Upper>() *= beta;
|
|
else matrix(c, *n, *n, *ldc).triangularView<Lower>() *= beta;
|
|
|
|
func[code](*n, *k, a, *lda, c, *ldc, alpha);
|
|
|
|
return 0;
|
|
}
|
|
|
|
// c = alpha*a*b' + alpha*b*a' + beta*c for op = 'N'or'n'
|
|
// c = alpha*a'*b + alpha*b'*a + beta*c for op = 'T'or't'
|
|
int EIGEN_BLAS_FUNC(syr2k)(char *uplo, char *op, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc)
|
|
{
|
|
Scalar* a = reinterpret_cast<Scalar*>(pa);
|
|
Scalar* b = reinterpret_cast<Scalar*>(pb);
|
|
Scalar* c = reinterpret_cast<Scalar*>(pc);
|
|
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
|
|
Scalar beta = *reinterpret_cast<Scalar*>(pbeta);
|
|
|
|
// TODO
|
|
std::cerr << "Eigen BLAS: _syr2k is not implemented yet\n";
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
#if ISCOMPLEX
|
|
|
|
// c = alpha*a*b + beta*c for side = 'L'or'l'
|
|
// c = alpha*b*a + beta*c for side = 'R'or'r
|
|
int EIGEN_BLAS_FUNC(hemm)(char *side, char *uplo, int *m, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc)
|
|
{
|
|
Scalar* a = reinterpret_cast<Scalar*>(pa);
|
|
Scalar* b = reinterpret_cast<Scalar*>(pb);
|
|
Scalar* c = reinterpret_cast<Scalar*>(pc);
|
|
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
|
|
Scalar beta = *reinterpret_cast<Scalar*>(pbeta);
|
|
|
|
// std::cerr << "in hemm " << *side << " " << *uplo << " " << *m << " " << *n << " " << alpha << " " << *lda << " " << beta << " " << *ldc << "\n";
|
|
|
|
if(*m<0 || *n<0)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
if(beta!=Scalar(1))
|
|
matrix(c, *m, *n, *ldc) *= beta;
|
|
|
|
if(SIDE(*side)==LEFT)
|
|
if(UPLO(*uplo)==UP) ei_product_selfadjoint_matrix<Scalar, RowMajor,true,Conj, ColMajor,false,false, ColMajor>::run(*m, *n, a, *lda, b, *ldb, c, *ldc, alpha);
|
|
else if(UPLO(*uplo)==LO) ei_product_selfadjoint_matrix<Scalar, ColMajor,true,false, ColMajor,false,false, ColMajor>::run(*m, *n, a, *lda, b, *ldb, c, *ldc, alpha);
|
|
else return 0;
|
|
else if(SIDE(*side)==RIGHT)
|
|
if(UPLO(*uplo)==UP) ei_product_selfadjoint_matrix<Scalar, ColMajor,false,false, RowMajor,true,Conj, ColMajor>::run(*m, *n, b, *ldb, a, *lda, c, *ldc, alpha);
|
|
else if(UPLO(*uplo)==LO) ei_product_selfadjoint_matrix<Scalar, ColMajor,false,false, ColMajor,true,false, ColMajor>::run(*m, *n, b, *ldb, a, *lda, c, *ldc, alpha);
|
|
else return 0;
|
|
else
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
// c = alpha*a*conj(a') + beta*c for op = 'N'or'n'
|
|
// c = alpha*conj(a')*a + beta*c for op = 'C'or'c'
|
|
int EIGEN_BLAS_FUNC(herk)(char *uplo, char *op, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pbeta, RealScalar *pc, int *ldc)
|
|
{
|
|
typedef void (*functype)(int, int, const Scalar *, int, Scalar *, int, Scalar);
|
|
static functype func[8];
|
|
|
|
static bool init = false;
|
|
if(!init)
|
|
{
|
|
for(int k=0; k<8; ++k)
|
|
func[k] = 0;
|
|
|
|
func[NOTR | (UP << 2)] = (ei_selfadjoint_product<Scalar,ColMajor,ColMajor,true, Upper>::run);
|
|
func[ADJ | (UP << 2)] = (ei_selfadjoint_product<Scalar,RowMajor,ColMajor,false,Upper>::run);
|
|
|
|
func[NOTR | (LO << 2)] = (ei_selfadjoint_product<Scalar,ColMajor,ColMajor,true, Lower>::run);
|
|
func[ADJ | (LO << 2)] = (ei_selfadjoint_product<Scalar,RowMajor,ColMajor,false,Lower>::run);
|
|
|
|
init = true;
|
|
}
|
|
|
|
Scalar* a = reinterpret_cast<Scalar*>(pa);
|
|
Scalar* c = reinterpret_cast<Scalar*>(pc);
|
|
RealScalar alpha = *palpha;
|
|
RealScalar beta = *pbeta;
|
|
|
|
// std::cerr << "in herk " << *uplo << " " << *op << " " << *n << " " << *k << " " << alpha << " " << *lda << " " << beta << " " << *ldc << "\n";
|
|
|
|
if(*n<0 || *k<0)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int code = OP(*op) | (UPLO(*uplo) << 2);
|
|
if(code>=8 || func[code]==0)
|
|
return 0;
|
|
|
|
if(beta!=RealScalar(1))
|
|
{
|
|
if(UPLO(*uplo)==UP) matrix(c, *n, *n, *ldc).triangularView<StrictlyUpper>() *= beta;
|
|
else matrix(c, *n, *n, *ldc).triangularView<StrictlyLower>() *= beta;
|
|
|
|
matrix(c, *n, *n, *ldc).diagonal().real() *= beta;
|
|
matrix(c, *n, *n, *ldc).diagonal().imag().setZero();
|
|
}
|
|
|
|
if(*k>0 && alpha!=RealScalar(0))
|
|
{
|
|
func[code](*n, *k, a, *lda, c, *ldc, alpha);
|
|
matrix(c, *n, *n, *ldc).diagonal().imag().setZero();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// c = alpha*a*conj(b') + conj(alpha)*b*conj(a') + beta*c, for op = 'N'or'n'
|
|
// c = alpha*conj(b')*a + conj(alpha)*conj(a')*b + beta*c, for op = 'C'or'c'
|
|
int EIGEN_BLAS_FUNC(her2k)(char *uplo, char *op, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc)
|
|
{
|
|
Scalar* a = reinterpret_cast<Scalar*>(pa);
|
|
Scalar* b = reinterpret_cast<Scalar*>(pb);
|
|
Scalar* c = reinterpret_cast<Scalar*>(pc);
|
|
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
|
|
Scalar beta = *reinterpret_cast<Scalar*>(pbeta);
|
|
|
|
if(*n<0 || *k<0)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
// TODO
|
|
std::cerr << "Eigen BLAS: _her2k is not implemented yet\n";
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif // ISCOMPLEX
|