mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-06 14:14:46 +08:00
82f0ce2726
This provide several advantages: - more flexibility in designing unit tests - unit tests can be glued to speed up compilation - unit tests are compiled with same predefined macros, which is a requirement for zapcc
182 lines
7.6 KiB
C++
182 lines
7.6 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2015
|
|
// Mehdi Goli Codeplay Software Ltd.
|
|
// Ralph Potter Codeplay Software Ltd.
|
|
// Luke Iwanski Codeplay Software Ltd.
|
|
// Contact: <eigen@codeplay.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#define EIGEN_TEST_NO_LONGDOUBLE
|
|
#define EIGEN_TEST_NO_COMPLEX
|
|
|
|
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t
|
|
#define EIGEN_USE_SYCL
|
|
|
|
#include "main.h"
|
|
#include <unsupported/Eigen/CXX11/Tensor>
|
|
|
|
|
|
template <typename DataType, int DataLayout, typename IndexType>
|
|
static void test_full_reductions_mean_sycl(const Eigen::SyclDevice& sycl_device) {
|
|
|
|
const IndexType num_rows = 452;
|
|
const IndexType num_cols = 765;
|
|
array<IndexType, 2> tensorRange = {{num_rows, num_cols}};
|
|
|
|
Tensor<DataType, 2, DataLayout, IndexType> in(tensorRange);
|
|
Tensor<DataType, 0, DataLayout, IndexType> full_redux;
|
|
Tensor<DataType, 0, DataLayout, IndexType> full_redux_gpu;
|
|
|
|
in.setRandom();
|
|
|
|
full_redux = in.mean();
|
|
|
|
DataType* gpu_in_data = static_cast<DataType*>(sycl_device.allocate(in.dimensions().TotalSize()*sizeof(DataType)));
|
|
DataType* gpu_out_data =(DataType*)sycl_device.allocate(sizeof(DataType));
|
|
|
|
TensorMap<Tensor<DataType, 2, DataLayout, IndexType> > in_gpu(gpu_in_data, tensorRange);
|
|
TensorMap<Tensor<DataType, 0, DataLayout, IndexType> > out_gpu(gpu_out_data);
|
|
|
|
sycl_device.memcpyHostToDevice(gpu_in_data, in.data(),(in.dimensions().TotalSize())*sizeof(DataType));
|
|
out_gpu.device(sycl_device) = in_gpu.mean();
|
|
sycl_device.memcpyDeviceToHost(full_redux_gpu.data(), gpu_out_data, sizeof(DataType));
|
|
// Check that the CPU and GPU reductions return the same result.
|
|
VERIFY_IS_APPROX(full_redux_gpu(), full_redux());
|
|
sycl_device.deallocate(gpu_in_data);
|
|
sycl_device.deallocate(gpu_out_data);
|
|
}
|
|
|
|
|
|
template <typename DataType, int DataLayout, typename IndexType>
|
|
static void test_full_reductions_min_sycl(const Eigen::SyclDevice& sycl_device) {
|
|
|
|
const IndexType num_rows = 876;
|
|
const IndexType num_cols = 953;
|
|
array<IndexType, 2> tensorRange = {{num_rows, num_cols}};
|
|
|
|
Tensor<DataType, 2, DataLayout, IndexType> in(tensorRange);
|
|
Tensor<DataType, 0, DataLayout, IndexType> full_redux;
|
|
Tensor<DataType, 0, DataLayout, IndexType> full_redux_gpu;
|
|
|
|
in.setRandom();
|
|
|
|
full_redux = in.minimum();
|
|
|
|
DataType* gpu_in_data = static_cast<DataType*>(sycl_device.allocate(in.dimensions().TotalSize()*sizeof(DataType)));
|
|
DataType* gpu_out_data =(DataType*)sycl_device.allocate(sizeof(DataType));
|
|
|
|
TensorMap<Tensor<DataType, 2, DataLayout, IndexType> > in_gpu(gpu_in_data, tensorRange);
|
|
TensorMap<Tensor<DataType, 0, DataLayout, IndexType> > out_gpu(gpu_out_data);
|
|
|
|
sycl_device.memcpyHostToDevice(gpu_in_data, in.data(),(in.dimensions().TotalSize())*sizeof(DataType));
|
|
out_gpu.device(sycl_device) = in_gpu.minimum();
|
|
sycl_device.memcpyDeviceToHost(full_redux_gpu.data(), gpu_out_data, sizeof(DataType));
|
|
// Check that the CPU and GPU reductions return the same result.
|
|
VERIFY_IS_APPROX(full_redux_gpu(), full_redux());
|
|
sycl_device.deallocate(gpu_in_data);
|
|
sycl_device.deallocate(gpu_out_data);
|
|
}
|
|
|
|
|
|
template <typename DataType, int DataLayout, typename IndexType>
|
|
static void test_first_dim_reductions_max_sycl(const Eigen::SyclDevice& sycl_device) {
|
|
|
|
IndexType dim_x = 145;
|
|
IndexType dim_y = 1;
|
|
IndexType dim_z = 67;
|
|
|
|
array<IndexType, 3> tensorRange = {{dim_x, dim_y, dim_z}};
|
|
Eigen::array<IndexType, 1> red_axis;
|
|
red_axis[0] = 0;
|
|
array<IndexType, 2> reduced_tensorRange = {{dim_y, dim_z}};
|
|
|
|
Tensor<DataType, 3, DataLayout, IndexType> in(tensorRange);
|
|
Tensor<DataType, 2, DataLayout, IndexType> redux(reduced_tensorRange);
|
|
Tensor<DataType, 2, DataLayout, IndexType> redux_gpu(reduced_tensorRange);
|
|
|
|
in.setRandom();
|
|
|
|
redux= in.maximum(red_axis);
|
|
|
|
DataType* gpu_in_data = static_cast<DataType*>(sycl_device.allocate(in.dimensions().TotalSize()*sizeof(DataType)));
|
|
DataType* gpu_out_data = static_cast<DataType*>(sycl_device.allocate(redux_gpu.dimensions().TotalSize()*sizeof(DataType)));
|
|
|
|
TensorMap<Tensor<DataType, 3, DataLayout, IndexType> > in_gpu(gpu_in_data, tensorRange);
|
|
TensorMap<Tensor<DataType, 2, DataLayout, IndexType> > out_gpu(gpu_out_data, reduced_tensorRange);
|
|
|
|
sycl_device.memcpyHostToDevice(gpu_in_data, in.data(),(in.dimensions().TotalSize())*sizeof(DataType));
|
|
out_gpu.device(sycl_device) = in_gpu.maximum(red_axis);
|
|
sycl_device.memcpyDeviceToHost(redux_gpu.data(), gpu_out_data, redux_gpu.dimensions().TotalSize()*sizeof(DataType));
|
|
|
|
// Check that the CPU and GPU reductions return the same result.
|
|
for(IndexType j=0; j<reduced_tensorRange[0]; j++ )
|
|
for(IndexType k=0; k<reduced_tensorRange[1]; k++ )
|
|
VERIFY_IS_APPROX(redux_gpu(j,k), redux(j,k));
|
|
|
|
sycl_device.deallocate(gpu_in_data);
|
|
sycl_device.deallocate(gpu_out_data);
|
|
}
|
|
|
|
template <typename DataType, int DataLayout, typename IndexType>
|
|
static void test_last_dim_reductions_sum_sycl(const Eigen::SyclDevice &sycl_device) {
|
|
|
|
IndexType dim_x = 567;
|
|
IndexType dim_y = 1;
|
|
IndexType dim_z = 47;
|
|
|
|
array<IndexType, 3> tensorRange = {{dim_x, dim_y, dim_z}};
|
|
Eigen::array<IndexType, 1> red_axis;
|
|
red_axis[0] = 2;
|
|
array<IndexType, 2> reduced_tensorRange = {{dim_x, dim_y}};
|
|
|
|
Tensor<DataType, 3, DataLayout, IndexType> in(tensorRange);
|
|
Tensor<DataType, 2, DataLayout, IndexType> redux(reduced_tensorRange);
|
|
Tensor<DataType, 2, DataLayout, IndexType> redux_gpu(reduced_tensorRange);
|
|
|
|
in.setRandom();
|
|
|
|
redux= in.sum(red_axis);
|
|
|
|
DataType* gpu_in_data = static_cast<DataType*>(sycl_device.allocate(in.dimensions().TotalSize()*sizeof(DataType)));
|
|
DataType* gpu_out_data = static_cast<DataType*>(sycl_device.allocate(redux_gpu.dimensions().TotalSize()*sizeof(DataType)));
|
|
|
|
TensorMap<Tensor<DataType, 3, DataLayout, IndexType> > in_gpu(gpu_in_data, tensorRange);
|
|
TensorMap<Tensor<DataType, 2, DataLayout, IndexType> > out_gpu(gpu_out_data, reduced_tensorRange);
|
|
|
|
sycl_device.memcpyHostToDevice(gpu_in_data, in.data(),(in.dimensions().TotalSize())*sizeof(DataType));
|
|
out_gpu.device(sycl_device) = in_gpu.sum(red_axis);
|
|
sycl_device.memcpyDeviceToHost(redux_gpu.data(), gpu_out_data, redux_gpu.dimensions().TotalSize()*sizeof(DataType));
|
|
// Check that the CPU and GPU reductions return the same result.
|
|
for(IndexType j=0; j<reduced_tensorRange[0]; j++ )
|
|
for(IndexType k=0; k<reduced_tensorRange[1]; k++ )
|
|
VERIFY_IS_APPROX(redux_gpu(j,k), redux(j,k));
|
|
|
|
sycl_device.deallocate(gpu_in_data);
|
|
sycl_device.deallocate(gpu_out_data);
|
|
|
|
}
|
|
template<typename DataType> void sycl_reduction_test_per_device(const cl::sycl::device& d){
|
|
std::cout << "Running on " << d.template get_info<cl::sycl::info::device::name>() << std::endl;
|
|
QueueInterface queueInterface(d);
|
|
auto sycl_device = Eigen::SyclDevice(&queueInterface);
|
|
|
|
test_full_reductions_mean_sycl<DataType, RowMajor, int64_t>(sycl_device);
|
|
test_full_reductions_min_sycl<DataType, RowMajor, int64_t>(sycl_device);
|
|
test_first_dim_reductions_max_sycl<DataType, RowMajor, int64_t>(sycl_device);
|
|
test_last_dim_reductions_sum_sycl<DataType, RowMajor, int64_t>(sycl_device);
|
|
test_full_reductions_mean_sycl<DataType, ColMajor, int64_t>(sycl_device);
|
|
test_full_reductions_min_sycl<DataType, ColMajor, int64_t>(sycl_device);
|
|
test_first_dim_reductions_max_sycl<DataType, ColMajor, int64_t>(sycl_device);
|
|
test_last_dim_reductions_sum_sycl<DataType, ColMajor, int64_t>(sycl_device);
|
|
}
|
|
EIGEN_DECLARE_TEST(cxx11_tensor_reduction_sycl) {
|
|
for (const auto& device :Eigen::get_sycl_supported_devices()) {
|
|
CALL_SUBTEST(sycl_reduction_test_per_device<float>(device));
|
|
}
|
|
}
|