mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-06 14:14:46 +08:00
82f0ce2726
This provide several advantages: - more flexibility in designing unit tests - unit tests can be glued to speed up compilation - unit tests are compiled with same predefined macros, which is a requirement for zapcc
138 lines
4.2 KiB
C++
138 lines
4.2 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include "main.h"
|
|
|
|
#include <Eigen/CXX11/Tensor>
|
|
|
|
using Eigen::Tensor;
|
|
|
|
template<int DataLayout>
|
|
static void test_dimension_failures()
|
|
{
|
|
Tensor<int, 3, DataLayout> left(2, 3, 1);
|
|
Tensor<int, 3, DataLayout> right(3, 3, 1);
|
|
left.setRandom();
|
|
right.setRandom();
|
|
|
|
// Okay; other dimensions are equal.
|
|
Tensor<int, 3, DataLayout> concatenation = left.concatenate(right, 0);
|
|
|
|
// Dimension mismatches.
|
|
VERIFY_RAISES_ASSERT(concatenation = left.concatenate(right, 1));
|
|
VERIFY_RAISES_ASSERT(concatenation = left.concatenate(right, 2));
|
|
|
|
// Axis > NumDims or < 0.
|
|
VERIFY_RAISES_ASSERT(concatenation = left.concatenate(right, 3));
|
|
VERIFY_RAISES_ASSERT(concatenation = left.concatenate(right, -1));
|
|
}
|
|
|
|
template<int DataLayout>
|
|
static void test_static_dimension_failure()
|
|
{
|
|
Tensor<int, 2, DataLayout> left(2, 3);
|
|
Tensor<int, 3, DataLayout> right(2, 3, 1);
|
|
|
|
#ifdef CXX11_TENSOR_CONCATENATION_STATIC_DIMENSION_FAILURE
|
|
// Technically compatible, but we static assert that the inputs have same
|
|
// NumDims.
|
|
Tensor<int, 3, DataLayout> concatenation = left.concatenate(right, 0);
|
|
#endif
|
|
|
|
// This can be worked around in this case.
|
|
Tensor<int, 3, DataLayout> concatenation = left
|
|
.reshape(Tensor<int, 3>::Dimensions(2, 3, 1))
|
|
.concatenate(right, 0);
|
|
Tensor<int, 2, DataLayout> alternative = left
|
|
.concatenate(right.reshape(Tensor<int, 2>::Dimensions{{{2, 3}}}), 0);
|
|
}
|
|
|
|
template<int DataLayout>
|
|
static void test_simple_concatenation()
|
|
{
|
|
Tensor<int, 3, DataLayout> left(2, 3, 1);
|
|
Tensor<int, 3, DataLayout> right(2, 3, 1);
|
|
left.setRandom();
|
|
right.setRandom();
|
|
|
|
Tensor<int, 3, DataLayout> concatenation = left.concatenate(right, 0);
|
|
VERIFY_IS_EQUAL(concatenation.dimension(0), 4);
|
|
VERIFY_IS_EQUAL(concatenation.dimension(1), 3);
|
|
VERIFY_IS_EQUAL(concatenation.dimension(2), 1);
|
|
for (int j = 0; j < 3; ++j) {
|
|
for (int i = 0; i < 2; ++i) {
|
|
VERIFY_IS_EQUAL(concatenation(i, j, 0), left(i, j, 0));
|
|
}
|
|
for (int i = 2; i < 4; ++i) {
|
|
VERIFY_IS_EQUAL(concatenation(i, j, 0), right(i - 2, j, 0));
|
|
}
|
|
}
|
|
|
|
concatenation = left.concatenate(right, 1);
|
|
VERIFY_IS_EQUAL(concatenation.dimension(0), 2);
|
|
VERIFY_IS_EQUAL(concatenation.dimension(1), 6);
|
|
VERIFY_IS_EQUAL(concatenation.dimension(2), 1);
|
|
for (int i = 0; i < 2; ++i) {
|
|
for (int j = 0; j < 3; ++j) {
|
|
VERIFY_IS_EQUAL(concatenation(i, j, 0), left(i, j, 0));
|
|
}
|
|
for (int j = 3; j < 6; ++j) {
|
|
VERIFY_IS_EQUAL(concatenation(i, j, 0), right(i, j - 3, 0));
|
|
}
|
|
}
|
|
|
|
concatenation = left.concatenate(right, 2);
|
|
VERIFY_IS_EQUAL(concatenation.dimension(0), 2);
|
|
VERIFY_IS_EQUAL(concatenation.dimension(1), 3);
|
|
VERIFY_IS_EQUAL(concatenation.dimension(2), 2);
|
|
for (int i = 0; i < 2; ++i) {
|
|
for (int j = 0; j < 3; ++j) {
|
|
VERIFY_IS_EQUAL(concatenation(i, j, 0), left(i, j, 0));
|
|
VERIFY_IS_EQUAL(concatenation(i, j, 1), right(i, j, 0));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// TODO(phli): Add test once we have a real vectorized implementation.
|
|
// static void test_vectorized_concatenation() {}
|
|
|
|
static void test_concatenation_as_lvalue()
|
|
{
|
|
Tensor<int, 2> t1(2, 3);
|
|
Tensor<int, 2> t2(2, 3);
|
|
t1.setRandom();
|
|
t2.setRandom();
|
|
|
|
Tensor<int, 2> result(4, 3);
|
|
result.setRandom();
|
|
t1.concatenate(t2, 0) = result;
|
|
|
|
for (int i = 0; i < 2; ++i) {
|
|
for (int j = 0; j < 3; ++j) {
|
|
VERIFY_IS_EQUAL(t1(i, j), result(i, j));
|
|
VERIFY_IS_EQUAL(t2(i, j), result(i+2, j));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
EIGEN_DECLARE_TEST(cxx11_tensor_concatenation)
|
|
{
|
|
CALL_SUBTEST(test_dimension_failures<ColMajor>());
|
|
CALL_SUBTEST(test_dimension_failures<RowMajor>());
|
|
CALL_SUBTEST(test_static_dimension_failure<ColMajor>());
|
|
CALL_SUBTEST(test_static_dimension_failure<RowMajor>());
|
|
CALL_SUBTEST(test_simple_concatenation<ColMajor>());
|
|
CALL_SUBTEST(test_simple_concatenation<RowMajor>());
|
|
// CALL_SUBTEST(test_vectorized_concatenation());
|
|
CALL_SUBTEST(test_concatenation_as_lvalue());
|
|
|
|
}
|