mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-15 07:10:37 +08:00
150 lines
5.7 KiB
C++
150 lines
5.7 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "main.h"
|
|
|
|
template<typename PermutationVectorType>
|
|
void randomPermutationVector(PermutationVectorType& v, typename PermutationVectorType::Index size)
|
|
{
|
|
typedef typename PermutationVectorType::Index Index;
|
|
typedef typename PermutationVectorType::Scalar Scalar;
|
|
v.resize(size);
|
|
for(Index i = 0; i < size; ++i) v(i) = Scalar(i);
|
|
if(size == 1) return;
|
|
for(Index n = 0; n < 3 * size; ++n)
|
|
{
|
|
Index i = internal::random<Index>(0, size-1);
|
|
Index j;
|
|
do j = internal::random<Index>(0, size-1); while(j==i);
|
|
std::swap(v(i), v(j));
|
|
}
|
|
}
|
|
|
|
using namespace std;
|
|
template<typename MatrixType> void permutationmatrices(const MatrixType& m)
|
|
{
|
|
typedef typename MatrixType::Index Index;
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename MatrixType::RealScalar RealScalar;
|
|
enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime,
|
|
Options = MatrixType::Options };
|
|
typedef PermutationMatrix<Rows> LeftPermutationType;
|
|
typedef Matrix<int, Rows, 1> LeftPermutationVectorType;
|
|
typedef Map<LeftPermutationType> MapLeftPerm;
|
|
typedef PermutationMatrix<Cols> RightPermutationType;
|
|
typedef Matrix<int, Cols, 1> RightPermutationVectorType;
|
|
typedef Map<RightPermutationType> MapRightPerm;
|
|
|
|
Index rows = m.rows();
|
|
Index cols = m.cols();
|
|
|
|
MatrixType m_original = MatrixType::Random(rows,cols);
|
|
LeftPermutationVectorType lv;
|
|
randomPermutationVector(lv, rows);
|
|
LeftPermutationType lp(lv);
|
|
RightPermutationVectorType rv;
|
|
randomPermutationVector(rv, cols);
|
|
RightPermutationType rp(rv);
|
|
MatrixType m_permuted = lp * m_original * rp;
|
|
|
|
for (int i=0; i<rows; i++)
|
|
for (int j=0; j<cols; j++)
|
|
VERIFY_IS_APPROX(m_permuted(lv(i),j), m_original(i,rv(j)));
|
|
|
|
Matrix<Scalar,Rows,Rows> lm(lp);
|
|
Matrix<Scalar,Cols,Cols> rm(rp);
|
|
|
|
VERIFY_IS_APPROX(m_permuted, lm*m_original*rm);
|
|
|
|
VERIFY_IS_APPROX(lp.inverse()*m_permuted*rp.inverse(), m_original);
|
|
VERIFY_IS_APPROX(lv.asPermutation().inverse()*m_permuted*rv.asPermutation().inverse(), m_original);
|
|
VERIFY_IS_APPROX(MapLeftPerm(lv.data(),lv.size()).inverse()*m_permuted*MapRightPerm(rv.data(),rv.size()).inverse(), m_original);
|
|
|
|
VERIFY((lp*lp.inverse()).toDenseMatrix().isIdentity());
|
|
VERIFY((lv.asPermutation()*lv.asPermutation().inverse()).toDenseMatrix().isIdentity());
|
|
VERIFY((MapLeftPerm(lv.data(),lv.size())*MapLeftPerm(lv.data(),lv.size()).inverse()).toDenseMatrix().isIdentity());
|
|
|
|
LeftPermutationVectorType lv2;
|
|
randomPermutationVector(lv2, rows);
|
|
LeftPermutationType lp2(lv2);
|
|
Matrix<Scalar,Rows,Rows> lm2(lp2);
|
|
VERIFY_IS_APPROX((lp*lp2).toDenseMatrix().template cast<Scalar>(), lm*lm2);
|
|
VERIFY_IS_APPROX((lv.asPermutation()*lv2.asPermutation()).toDenseMatrix().template cast<Scalar>(), lm*lm2);
|
|
VERIFY_IS_APPROX((MapLeftPerm(lv.data(),lv.size())*MapLeftPerm(lv2.data(),lv2.size())).toDenseMatrix().template cast<Scalar>(), lm*lm2);
|
|
|
|
LeftPermutationType identityp;
|
|
identityp.setIdentity(rows);
|
|
VERIFY_IS_APPROX(m_original, identityp*m_original);
|
|
|
|
// check inplace permutations
|
|
m_permuted = m_original;
|
|
m_permuted = lp.inverse() * m_permuted;
|
|
VERIFY_IS_APPROX(m_permuted, lp.inverse()*m_original);
|
|
|
|
m_permuted = m_original;
|
|
m_permuted = m_permuted * rp.inverse();
|
|
VERIFY_IS_APPROX(m_permuted, m_original*rp.inverse());
|
|
|
|
m_permuted = m_original;
|
|
m_permuted = lp * m_permuted;
|
|
VERIFY_IS_APPROX(m_permuted, lp*m_original);
|
|
|
|
m_permuted = m_original;
|
|
m_permuted = m_permuted * rp;
|
|
VERIFY_IS_APPROX(m_permuted, m_original*rp);
|
|
|
|
if(rows>1 && cols>1)
|
|
{
|
|
lp2 = lp;
|
|
Index i = internal::random<Index>(0, rows-1);
|
|
Index j;
|
|
do j = internal::random<Index>(0, rows-1); while(j==i);
|
|
lp2.applyTranspositionOnTheLeft(i, j);
|
|
lm = lp;
|
|
lm.row(i).swap(lm.row(j));
|
|
VERIFY_IS_APPROX(lm, lp2.toDenseMatrix().template cast<Scalar>());
|
|
|
|
RightPermutationType rp2 = rp;
|
|
i = internal::random<Index>(0, cols-1);
|
|
do j = internal::random<Index>(0, cols-1); while(j==i);
|
|
rp2.applyTranspositionOnTheRight(i, j);
|
|
rm = rp;
|
|
rm.col(i).swap(rm.col(j));
|
|
VERIFY_IS_APPROX(rm, rp2.toDenseMatrix().template cast<Scalar>());
|
|
}
|
|
}
|
|
|
|
void test_permutationmatrices()
|
|
{
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1( permutationmatrices(Matrix<float, 1, 1>()) );
|
|
CALL_SUBTEST_2( permutationmatrices(Matrix3f()) );
|
|
CALL_SUBTEST_3( permutationmatrices(Matrix<double,3,3,RowMajor>()) );
|
|
CALL_SUBTEST_4( permutationmatrices(Matrix4d()) );
|
|
CALL_SUBTEST_5( permutationmatrices(Matrix<double,40,60>()) );
|
|
CALL_SUBTEST_6( permutationmatrices(Matrix<double,Dynamic,Dynamic,RowMajor>(20, 30)) );
|
|
CALL_SUBTEST_7( permutationmatrices(MatrixXcf(15, 10)) );
|
|
}
|
|
}
|