mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-12 14:25:16 +08:00
00f32752f7
* Unifying all loadLocalTile from lhs and rhs to an extract_block function. * Adding get_tensor operation which was missing in TensorContractionMapper. * Adding the -D method missing from cmake for Disable_Skinny Contraction operation. * Wrapping all the indices in TensorScanSycl into Scan parameter struct. * Fixing typo in Device SYCL * Unifying load to private register for tall/skinny no shared * Unifying load to vector tile for tensor-vector/vector-tensor operation * Removing all the LHS/RHS class for extracting data from global * Removing Outputfunction from TensorContractionSkinnyNoshared. * Combining the local memory version of tall/skinny and normal tensor contraction into one kernel. * Combining the no-local memory version of tall/skinny and normal tensor contraction into one kernel. * Combining General Tensor-Vector and VectorTensor contraction into one kernel. * Making double buffering optional for Tensor contraction when local memory is version is used. * Modifying benchmark to accept custom Reduction Sizes * Disabling AVX optimization for SYCL backend on the host to allow SSE optimization to the host * Adding Test for SYCL * Modifying SYCL CMake
118 lines
4.2 KiB
C++
118 lines
4.2 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2016
|
|
// Mehdi Goli Codeplay Software Ltd.
|
|
// Ralph Potter Codeplay Software Ltd.
|
|
// Luke Iwanski Codeplay Software Ltd.
|
|
// Contact: <eigen@codeplay.com>
|
|
// Benoit Steiner <benoit.steiner.goog@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#define EIGEN_TEST_NO_LONGDOUBLE
|
|
#define EIGEN_TEST_NO_COMPLEX
|
|
|
|
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t
|
|
#define EIGEN_USE_SYCL
|
|
|
|
#include "main.h"
|
|
#include <unsupported/Eigen/CXX11/Tensor>
|
|
|
|
using Eigen::array;
|
|
using Eigen::SyclDevice;
|
|
using Eigen::Tensor;
|
|
using Eigen::TensorMap;
|
|
|
|
template <typename DataType, int DataLayout, typename IndexType>
|
|
static void test_simple_shuffling_sycl(const Eigen::SyclDevice& sycl_device) {
|
|
IndexType sizeDim1 = 2;
|
|
IndexType sizeDim2 = 3;
|
|
IndexType sizeDim3 = 5;
|
|
IndexType sizeDim4 = 7;
|
|
array<IndexType, 4> tensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4}};
|
|
Tensor<DataType, 4, DataLayout, IndexType> tensor(tensorRange);
|
|
Tensor<DataType, 4, DataLayout, IndexType> no_shuffle(tensorRange);
|
|
tensor.setRandom();
|
|
|
|
const size_t buffSize = tensor.size() * sizeof(DataType);
|
|
array<IndexType, 4> shuffles;
|
|
shuffles[0] = 0;
|
|
shuffles[1] = 1;
|
|
shuffles[2] = 2;
|
|
shuffles[3] = 3;
|
|
DataType* gpu_data1 = static_cast<DataType*>(sycl_device.allocate(buffSize));
|
|
DataType* gpu_data2 = static_cast<DataType*>(sycl_device.allocate(buffSize));
|
|
|
|
TensorMap<Tensor<DataType, 4, DataLayout, IndexType>> gpu1(gpu_data1,
|
|
tensorRange);
|
|
TensorMap<Tensor<DataType, 4, DataLayout, IndexType>> gpu2(gpu_data2,
|
|
tensorRange);
|
|
|
|
sycl_device.memcpyHostToDevice(gpu_data1, tensor.data(), buffSize);
|
|
|
|
gpu2.device(sycl_device) = gpu1.shuffle(shuffles);
|
|
sycl_device.memcpyDeviceToHost(no_shuffle.data(), gpu_data2, buffSize);
|
|
sycl_device.synchronize();
|
|
|
|
VERIFY_IS_EQUAL(no_shuffle.dimension(0), sizeDim1);
|
|
VERIFY_IS_EQUAL(no_shuffle.dimension(1), sizeDim2);
|
|
VERIFY_IS_EQUAL(no_shuffle.dimension(2), sizeDim3);
|
|
VERIFY_IS_EQUAL(no_shuffle.dimension(3), sizeDim4);
|
|
|
|
for (IndexType i = 0; i < sizeDim1; ++i) {
|
|
for (IndexType j = 0; j < sizeDim2; ++j) {
|
|
for (IndexType k = 0; k < sizeDim3; ++k) {
|
|
for (IndexType l = 0; l < sizeDim4; ++l) {
|
|
VERIFY_IS_EQUAL(tensor(i, j, k, l), no_shuffle(i, j, k, l));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
shuffles[0] = 2;
|
|
shuffles[1] = 3;
|
|
shuffles[2] = 1;
|
|
shuffles[3] = 0;
|
|
array<IndexType, 4> tensorrangeShuffle = {
|
|
{sizeDim3, sizeDim4, sizeDim2, sizeDim1}};
|
|
Tensor<DataType, 4, DataLayout, IndexType> shuffle(tensorrangeShuffle);
|
|
DataType* gpu_data3 = static_cast<DataType*>(sycl_device.allocate(buffSize));
|
|
TensorMap<Tensor<DataType, 4, DataLayout, IndexType>> gpu3(
|
|
gpu_data3, tensorrangeShuffle);
|
|
|
|
gpu3.device(sycl_device) = gpu1.shuffle(shuffles);
|
|
sycl_device.memcpyDeviceToHost(shuffle.data(), gpu_data3, buffSize);
|
|
sycl_device.synchronize();
|
|
|
|
VERIFY_IS_EQUAL(shuffle.dimension(0), sizeDim3);
|
|
VERIFY_IS_EQUAL(shuffle.dimension(1), sizeDim4);
|
|
VERIFY_IS_EQUAL(shuffle.dimension(2), sizeDim2);
|
|
VERIFY_IS_EQUAL(shuffle.dimension(3), sizeDim1);
|
|
|
|
for (IndexType i = 0; i < sizeDim1; ++i) {
|
|
for (IndexType j = 0; j < sizeDim2; ++j) {
|
|
for (IndexType k = 0; k < sizeDim3; ++k) {
|
|
for (IndexType l = 0; l < sizeDim4; ++l) {
|
|
VERIFY_IS_EQUAL(tensor(i, j, k, l), shuffle(k, l, j, i));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename DataType, typename dev_Selector>
|
|
void sycl_shuffling_test_per_device(dev_Selector s) {
|
|
QueueInterface queueInterface(s);
|
|
auto sycl_device = Eigen::SyclDevice(&queueInterface);
|
|
test_simple_shuffling_sycl<DataType, RowMajor, int64_t>(sycl_device);
|
|
test_simple_shuffling_sycl<DataType, ColMajor, int64_t>(sycl_device);
|
|
}
|
|
EIGEN_DECLARE_TEST(cxx11_tensor_shuffling_sycl) {
|
|
for (const auto& device : Eigen::get_sycl_supported_devices()) {
|
|
CALL_SUBTEST(sycl_shuffling_test_per_device<float>(device));
|
|
}
|
|
}
|