mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-12 14:25:16 +08:00
82f0ce2726
This provide several advantages: - more flexibility in designing unit tests - unit tests can be glued to speed up compilation - unit tests are compiled with same predefined macros, which is a requirement for zapcc
249 lines
6.6 KiB
C++
249 lines
6.6 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include "main.h"
|
|
|
|
#include <Eigen/CXX11/Tensor>
|
|
|
|
using Eigen::Tensor;
|
|
using Eigen::RowMajor;
|
|
|
|
static void test_simple_lvalue_ref()
|
|
{
|
|
Tensor<int, 1> input(6);
|
|
input.setRandom();
|
|
|
|
TensorRef<Tensor<int, 1>> ref3(input);
|
|
TensorRef<Tensor<int, 1>> ref4 = input;
|
|
|
|
VERIFY_IS_EQUAL(ref3.data(), input.data());
|
|
VERIFY_IS_EQUAL(ref4.data(), input.data());
|
|
|
|
for (int i = 0; i < 6; ++i) {
|
|
VERIFY_IS_EQUAL(ref3(i), input(i));
|
|
VERIFY_IS_EQUAL(ref4(i), input(i));
|
|
}
|
|
|
|
for (int i = 0; i < 6; ++i) {
|
|
ref3.coeffRef(i) = i;
|
|
}
|
|
for (int i = 0; i < 6; ++i) {
|
|
VERIFY_IS_EQUAL(input(i), i);
|
|
}
|
|
for (int i = 0; i < 6; ++i) {
|
|
ref4.coeffRef(i) = -i * 2;
|
|
}
|
|
for (int i = 0; i < 6; ++i) {
|
|
VERIFY_IS_EQUAL(input(i), -i*2);
|
|
}
|
|
}
|
|
|
|
|
|
static void test_simple_rvalue_ref()
|
|
{
|
|
Tensor<int, 1> input1(6);
|
|
input1.setRandom();
|
|
Tensor<int, 1> input2(6);
|
|
input2.setRandom();
|
|
|
|
TensorRef<Tensor<int, 1>> ref3(input1 + input2);
|
|
TensorRef<Tensor<int, 1>> ref4 = input1 + input2;
|
|
|
|
VERIFY_IS_NOT_EQUAL(ref3.data(), input1.data());
|
|
VERIFY_IS_NOT_EQUAL(ref4.data(), input1.data());
|
|
VERIFY_IS_NOT_EQUAL(ref3.data(), input2.data());
|
|
VERIFY_IS_NOT_EQUAL(ref4.data(), input2.data());
|
|
|
|
for (int i = 0; i < 6; ++i) {
|
|
VERIFY_IS_EQUAL(ref3(i), input1(i) + input2(i));
|
|
VERIFY_IS_EQUAL(ref4(i), input1(i) + input2(i));
|
|
}
|
|
}
|
|
|
|
|
|
static void test_multiple_dims()
|
|
{
|
|
Tensor<float, 3> input(3,5,7);
|
|
input.setRandom();
|
|
|
|
TensorRef<Tensor<float, 3>> ref(input);
|
|
VERIFY_IS_EQUAL(ref.data(), input.data());
|
|
VERIFY_IS_EQUAL(ref.dimension(0), 3);
|
|
VERIFY_IS_EQUAL(ref.dimension(1), 5);
|
|
VERIFY_IS_EQUAL(ref.dimension(2), 7);
|
|
|
|
for (int i = 0; i < 3; ++i) {
|
|
for (int j = 0; j < 5; ++j) {
|
|
for (int k = 0; k < 7; ++k) {
|
|
VERIFY_IS_EQUAL(ref(i,j,k), input(i,j,k));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void test_slice()
|
|
{
|
|
Tensor<float, 5> tensor(2,3,5,7,11);
|
|
tensor.setRandom();
|
|
|
|
Eigen::DSizes<ptrdiff_t, 5> indices(1,2,3,4,5);
|
|
Eigen::DSizes<ptrdiff_t, 5> sizes(1,1,1,1,1);
|
|
TensorRef<Tensor<float, 5>> slice = tensor.slice(indices, sizes);
|
|
VERIFY_IS_EQUAL(slice(0,0,0,0,0), tensor(1,2,3,4,5));
|
|
|
|
Eigen::DSizes<ptrdiff_t, 5> indices2(1,1,3,4,5);
|
|
Eigen::DSizes<ptrdiff_t, 5> sizes2(1,1,2,2,3);
|
|
slice = tensor.slice(indices2, sizes2);
|
|
for (int i = 0; i < 2; ++i) {
|
|
for (int j = 0; j < 2; ++j) {
|
|
for (int k = 0; k < 3; ++k) {
|
|
VERIFY_IS_EQUAL(slice(0,0,i,j,k), tensor(1,1,3+i,4+j,5+k));
|
|
}
|
|
}
|
|
}
|
|
|
|
Eigen::DSizes<ptrdiff_t, 5> indices3(0,0,0,0,0);
|
|
Eigen::DSizes<ptrdiff_t, 5> sizes3(2,3,1,1,1);
|
|
slice = tensor.slice(indices3, sizes3);
|
|
VERIFY_IS_EQUAL(slice.data(), tensor.data());
|
|
}
|
|
|
|
|
|
static void test_ref_of_ref()
|
|
{
|
|
Tensor<float, 3> input(3,5,7);
|
|
input.setRandom();
|
|
|
|
TensorRef<Tensor<float, 3>> ref(input);
|
|
TensorRef<Tensor<float, 3>> ref_of_ref(ref);
|
|
TensorRef<Tensor<float, 3>> ref_of_ref2;
|
|
ref_of_ref2 = ref;
|
|
|
|
VERIFY_IS_EQUAL(ref_of_ref.data(), input.data());
|
|
VERIFY_IS_EQUAL(ref_of_ref.dimension(0), 3);
|
|
VERIFY_IS_EQUAL(ref_of_ref.dimension(1), 5);
|
|
VERIFY_IS_EQUAL(ref_of_ref.dimension(2), 7);
|
|
|
|
VERIFY_IS_EQUAL(ref_of_ref2.data(), input.data());
|
|
VERIFY_IS_EQUAL(ref_of_ref2.dimension(0), 3);
|
|
VERIFY_IS_EQUAL(ref_of_ref2.dimension(1), 5);
|
|
VERIFY_IS_EQUAL(ref_of_ref2.dimension(2), 7);
|
|
|
|
for (int i = 0; i < 3; ++i) {
|
|
for (int j = 0; j < 5; ++j) {
|
|
for (int k = 0; k < 7; ++k) {
|
|
VERIFY_IS_EQUAL(ref_of_ref(i,j,k), input(i,j,k));
|
|
VERIFY_IS_EQUAL(ref_of_ref2(i,j,k), input(i,j,k));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void test_ref_in_expr()
|
|
{
|
|
Tensor<float, 3> input(3,5,7);
|
|
input.setRandom();
|
|
TensorRef<Tensor<float, 3>> input_ref(input);
|
|
|
|
Tensor<float, 3> result(3,5,7);
|
|
result.setRandom();
|
|
TensorRef<Tensor<float, 3>> result_ref(result);
|
|
|
|
Tensor<float, 3> bias(3,5,7);
|
|
bias.setRandom();
|
|
|
|
result_ref = input_ref + bias;
|
|
for (int i = 0; i < 3; ++i) {
|
|
for (int j = 0; j < 5; ++j) {
|
|
for (int k = 0; k < 7; ++k) {
|
|
VERIFY_IS_EQUAL(result_ref(i,j,k), input(i,j,k) + bias(i,j,k));
|
|
VERIFY_IS_NOT_EQUAL(result(i,j,k), input(i,j,k) + bias(i,j,k));
|
|
}
|
|
}
|
|
}
|
|
|
|
result = result_ref;
|
|
for (int i = 0; i < 3; ++i) {
|
|
for (int j = 0; j < 5; ++j) {
|
|
for (int k = 0; k < 7; ++k) {
|
|
VERIFY_IS_EQUAL(result(i,j,k), input(i,j,k) + bias(i,j,k));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void test_coeff_ref()
|
|
{
|
|
Tensor<float, 5> tensor(2,3,5,7,11);
|
|
tensor.setRandom();
|
|
Tensor<float, 5> original = tensor;
|
|
|
|
TensorRef<Tensor<float, 4>> slice = tensor.chip(7, 4);
|
|
slice.coeffRef(0, 0, 0, 0) = 1.0f;
|
|
slice.coeffRef(1, 0, 0, 0) += 2.0f;
|
|
|
|
VERIFY_IS_EQUAL(tensor(0,0,0,0,7), 1.0f);
|
|
VERIFY_IS_EQUAL(tensor(1,0,0,0,7), original(1,0,0,0,7) + 2.0f);
|
|
}
|
|
|
|
|
|
static void test_nested_ops_with_ref()
|
|
{
|
|
Tensor<float, 4> t(2, 3, 5, 7);
|
|
t.setRandom();
|
|
TensorMap<Tensor<const float, 4> > m(t.data(), 2, 3, 5, 7);
|
|
array<std::pair<ptrdiff_t, ptrdiff_t>, 4> paddings;
|
|
paddings[0] = std::make_pair(0, 0);
|
|
paddings[1] = std::make_pair(2, 1);
|
|
paddings[2] = std::make_pair(3, 4);
|
|
paddings[3] = std::make_pair(0, 0);
|
|
DSizes<Eigen::DenseIndex, 4> shuffle_dims(0, 1, 2, 3);
|
|
TensorRef<Tensor<const float, 4> > ref(m.pad(paddings));
|
|
array<std::pair<ptrdiff_t, ptrdiff_t>, 4> trivial;
|
|
trivial[0] = std::make_pair(0, 0);
|
|
trivial[1] = std::make_pair(0, 0);
|
|
trivial[2] = std::make_pair(0, 0);
|
|
trivial[3] = std::make_pair(0, 0);
|
|
Tensor<float, 4> padded = ref.shuffle(shuffle_dims).pad(trivial);
|
|
VERIFY_IS_EQUAL(padded.dimension(0), 2+0);
|
|
VERIFY_IS_EQUAL(padded.dimension(1), 3+3);
|
|
VERIFY_IS_EQUAL(padded.dimension(2), 5+7);
|
|
VERIFY_IS_EQUAL(padded.dimension(3), 7+0);
|
|
|
|
for (int i = 0; i < 2; ++i) {
|
|
for (int j = 0; j < 6; ++j) {
|
|
for (int k = 0; k < 12; ++k) {
|
|
for (int l = 0; l < 7; ++l) {
|
|
if (j >= 2 && j < 5 && k >= 3 && k < 8) {
|
|
VERIFY_IS_EQUAL(padded(i,j,k,l), t(i,j-2,k-3,l));
|
|
} else {
|
|
VERIFY_IS_EQUAL(padded(i,j,k,l), 0.0f);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
EIGEN_DECLARE_TEST(cxx11_tensor_ref)
|
|
{
|
|
CALL_SUBTEST(test_simple_lvalue_ref());
|
|
CALL_SUBTEST(test_simple_rvalue_ref());
|
|
CALL_SUBTEST(test_multiple_dims());
|
|
CALL_SUBTEST(test_slice());
|
|
CALL_SUBTEST(test_ref_of_ref());
|
|
CALL_SUBTEST(test_ref_in_expr());
|
|
CALL_SUBTEST(test_coeff_ref());
|
|
CALL_SUBTEST(test_nested_ops_with_ref());
|
|
}
|