mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-12 14:25:16 +08:00
82f0ce2726
This provide several advantages: - more flexibility in designing unit tests - unit tests can be glued to speed up compilation - unit tests are compiled with same predefined macros, which is a requirement for zapcc
112 lines
3.1 KiB
C++
112 lines
3.1 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include "main.h"
|
|
|
|
#include <Eigen/CXX11/Tensor>
|
|
|
|
using Eigen::Tensor;
|
|
|
|
|
|
struct InsertZeros {
|
|
DSizes<DenseIndex, 2> dimensions(const Tensor<float, 2>& input) const {
|
|
DSizes<DenseIndex, 2> result;
|
|
result[0] = input.dimension(0) * 2;
|
|
result[1] = input.dimension(1) * 2;
|
|
return result;
|
|
}
|
|
|
|
template <typename Output, typename Device>
|
|
void eval(const Tensor<float, 2>& input, Output& output, const Device& device) const
|
|
{
|
|
array<DenseIndex, 2> strides;
|
|
strides[0] = 2;
|
|
strides[1] = 2;
|
|
output.stride(strides).device(device) = input;
|
|
|
|
Eigen::DSizes<DenseIndex, 2> offsets(1,1);
|
|
Eigen::DSizes<DenseIndex, 2> extents(output.dimension(0)-1, output.dimension(1)-1);
|
|
output.slice(offsets, extents).stride(strides).device(device) = input.constant(0.0f);
|
|
}
|
|
};
|
|
|
|
static void test_custom_unary_op()
|
|
{
|
|
Tensor<float, 2> tensor(3,5);
|
|
tensor.setRandom();
|
|
|
|
Tensor<float, 2> result = tensor.customOp(InsertZeros());
|
|
VERIFY_IS_EQUAL(result.dimension(0), 6);
|
|
VERIFY_IS_EQUAL(result.dimension(1), 10);
|
|
|
|
for (int i = 0; i < 6; i+=2) {
|
|
for (int j = 0; j < 10; j+=2) {
|
|
VERIFY_IS_EQUAL(result(i, j), tensor(i/2, j/2));
|
|
}
|
|
}
|
|
for (int i = 1; i < 6; i+=2) {
|
|
for (int j = 1; j < 10; j+=2) {
|
|
VERIFY_IS_EQUAL(result(i, j), 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
struct BatchMatMul {
|
|
DSizes<DenseIndex, 3> dimensions(const Tensor<float, 3>& input1, const Tensor<float, 3>& input2) const {
|
|
DSizes<DenseIndex, 3> result;
|
|
result[0] = input1.dimension(0);
|
|
result[1] = input2.dimension(1);
|
|
result[2] = input2.dimension(2);
|
|
return result;
|
|
}
|
|
|
|
template <typename Output, typename Device>
|
|
void eval(const Tensor<float, 3>& input1, const Tensor<float, 3>& input2,
|
|
Output& output, const Device& device) const
|
|
{
|
|
typedef Tensor<float, 3>::DimensionPair DimPair;
|
|
array<DimPair, 1> dims;
|
|
dims[0] = DimPair(1, 0);
|
|
for (int i = 0; i < output.dimension(2); ++i) {
|
|
output.template chip<2>(i).device(device) = input1.chip<2>(i).contract(input2.chip<2>(i), dims);
|
|
}
|
|
}
|
|
};
|
|
|
|
|
|
static void test_custom_binary_op()
|
|
{
|
|
Tensor<float, 3> tensor1(2,3,5);
|
|
tensor1.setRandom();
|
|
Tensor<float, 3> tensor2(3,7,5);
|
|
tensor2.setRandom();
|
|
|
|
Tensor<float, 3> result = tensor1.customOp(tensor2, BatchMatMul());
|
|
for (int i = 0; i < 5; ++i) {
|
|
typedef Tensor<float, 3>::DimensionPair DimPair;
|
|
array<DimPair, 1> dims;
|
|
dims[0] = DimPair(1, 0);
|
|
Tensor<float, 2> reference = tensor1.chip<2>(i).contract(tensor2.chip<2>(i), dims);
|
|
TensorRef<Tensor<float, 2> > val = result.chip<2>(i);
|
|
for (int j = 0; j < 2; ++j) {
|
|
for (int k = 0; k < 7; ++k) {
|
|
VERIFY_IS_APPROX(val(j, k), reference(j, k));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
EIGEN_DECLARE_TEST(cxx11_tensor_custom_op)
|
|
{
|
|
CALL_SUBTEST(test_custom_unary_op());
|
|
CALL_SUBTEST(test_custom_binary_op());
|
|
}
|