mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-06 14:14:46 +08:00
159 lines
6.5 KiB
C++
159 lines
6.5 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifndef EIGEN_NO_STATIC_ASSERT
|
|
#define EIGEN_NO_STATIC_ASSERT // turn static asserts into runtime asserts in order to check them
|
|
#endif
|
|
|
|
#include "main.h"
|
|
|
|
template<typename VectorType> void map_class_vector(const VectorType& m)
|
|
{
|
|
typedef typename VectorType::Index Index;
|
|
typedef typename VectorType::Scalar Scalar;
|
|
|
|
Index size = m.size();
|
|
|
|
// test Map.h
|
|
Scalar* array1 = internal::aligned_new<Scalar>(size);
|
|
Scalar* array2 = internal::aligned_new<Scalar>(size);
|
|
Scalar* array3 = new Scalar[size+1];
|
|
Scalar* array3unaligned = size_t(array3)%16 == 0 ? array3+1 : array3;
|
|
|
|
Map<VectorType, Aligned>(array1, size) = VectorType::Random(size);
|
|
Map<VectorType, Aligned>(array2, size) = Map<VectorType,Aligned>(array1, size);
|
|
Map<VectorType>(array3unaligned, size) = Map<VectorType>(array1, size);
|
|
VectorType ma1 = Map<VectorType, Aligned>(array1, size);
|
|
VectorType ma2 = Map<VectorType, Aligned>(array2, size);
|
|
VectorType ma3 = Map<VectorType>(array3unaligned, size);
|
|
VERIFY_IS_EQUAL(ma1, ma2);
|
|
VERIFY_IS_EQUAL(ma1, ma3);
|
|
#ifdef EIGEN_VECTORIZE
|
|
VERIFY_RAISES_ASSERT((Map<VectorType,Aligned>(array3unaligned, size)))
|
|
#endif
|
|
|
|
internal::aligned_delete(array1, size);
|
|
internal::aligned_delete(array2, size);
|
|
delete[] array3;
|
|
}
|
|
|
|
template<typename MatrixType> void map_class_matrix(const MatrixType& m)
|
|
{
|
|
typedef typename MatrixType::Index Index;
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
|
|
Index rows = m.rows(), cols = m.cols(), size = rows*cols;
|
|
|
|
// test Map.h
|
|
Scalar* array1 = internal::aligned_new<Scalar>(size);
|
|
for(int i = 0; i < size; i++) array1[i] = Scalar(1);
|
|
Scalar* array2 = internal::aligned_new<Scalar>(size);
|
|
for(int i = 0; i < size; i++) array2[i] = Scalar(1);
|
|
Scalar* array3 = new Scalar[size+1];
|
|
for(int i = 0; i < size+1; i++) array3[i] = Scalar(1);
|
|
Scalar* array3unaligned = size_t(array3)%16 == 0 ? array3+1 : array3;
|
|
Map<MatrixType, Aligned>(array1, rows, cols) = MatrixType::Ones(rows,cols);
|
|
Map<MatrixType>(array2, rows, cols) = Map<MatrixType>(array1, rows, cols);
|
|
Map<MatrixType>(array3unaligned, rows, cols) = Map<MatrixType>(array1, rows, cols);
|
|
MatrixType ma1 = Map<MatrixType>(array1, rows, cols);
|
|
MatrixType ma2 = Map<MatrixType, Aligned>(array2, rows, cols);
|
|
VERIFY_IS_EQUAL(ma1, ma2);
|
|
MatrixType ma3 = Map<MatrixType>(array3unaligned, rows, cols);
|
|
VERIFY_IS_EQUAL(ma1, ma3);
|
|
|
|
internal::aligned_delete(array1, size);
|
|
internal::aligned_delete(array2, size);
|
|
delete[] array3;
|
|
}
|
|
|
|
template<typename VectorType> void map_static_methods(const VectorType& m)
|
|
{
|
|
typedef typename VectorType::Index Index;
|
|
typedef typename VectorType::Scalar Scalar;
|
|
|
|
Index size = m.size();
|
|
|
|
// test Map.h
|
|
Scalar* array1 = internal::aligned_new<Scalar>(size);
|
|
Scalar* array2 = internal::aligned_new<Scalar>(size);
|
|
Scalar* array3 = new Scalar[size+1];
|
|
Scalar* array3unaligned = size_t(array3)%16 == 0 ? array3+1 : array3;
|
|
|
|
VectorType::MapAligned(array1, size) = VectorType::Random(size);
|
|
VectorType::Map(array2, size) = VectorType::Map(array1, size);
|
|
VectorType::Map(array3unaligned, size) = VectorType::Map(array1, size);
|
|
VectorType ma1 = VectorType::Map(array1, size);
|
|
VectorType ma2 = VectorType::MapAligned(array2, size);
|
|
VectorType ma3 = VectorType::Map(array3unaligned, size);
|
|
VERIFY_IS_EQUAL(ma1, ma2);
|
|
VERIFY_IS_EQUAL(ma1, ma3);
|
|
|
|
internal::aligned_delete(array1, size);
|
|
internal::aligned_delete(array2, size);
|
|
delete[] array3;
|
|
}
|
|
|
|
template<typename PlainObjectType> void check_const_correctness(const PlainObjectType&)
|
|
{
|
|
typedef typename PlainObjectType::Index Index;
|
|
typedef typename PlainObjectType::Scalar Scalar;
|
|
|
|
// there's a lot that we can't test here while still having this test compile!
|
|
// the only possible approach would be to run a script trying to compile stuff and checking that it fails.
|
|
// CMake can help with that.
|
|
|
|
// verify that map-to-const don't have LvalueBit
|
|
typedef typename internal::add_const<PlainObjectType>::type ConstPlainObjectType;
|
|
VERIFY( !(internal::traits<Map<ConstPlainObjectType> >::Flags & LvalueBit) );
|
|
VERIFY( !(internal::traits<Map<ConstPlainObjectType, Aligned> >::Flags & LvalueBit) );
|
|
VERIFY( !(Map<ConstPlainObjectType>::Flags & LvalueBit) );
|
|
VERIFY( !(Map<ConstPlainObjectType, Aligned>::Flags & LvalueBit) );
|
|
}
|
|
|
|
void test_map()
|
|
{
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1( map_class_vector(Matrix<float, 1, 1>()) );
|
|
CALL_SUBTEST_1( check_const_correctness(Matrix<float, 1, 1>()) );
|
|
CALL_SUBTEST_2( map_class_vector(Vector4d()) );
|
|
CALL_SUBTEST_2( check_const_correctness(Matrix4d()) );
|
|
CALL_SUBTEST_3( map_class_vector(RowVector4f()) );
|
|
CALL_SUBTEST_4( map_class_vector(VectorXcf(8)) );
|
|
CALL_SUBTEST_5( map_class_vector(VectorXi(12)) );
|
|
CALL_SUBTEST_5( check_const_correctness(VectorXi(12)) );
|
|
|
|
CALL_SUBTEST_1( map_class_matrix(Matrix<float, 1, 1>()) );
|
|
CALL_SUBTEST_2( map_class_matrix(Matrix4d()) );
|
|
CALL_SUBTEST_11( map_class_matrix(Matrix<float,3,5>()) );
|
|
CALL_SUBTEST_4( map_class_matrix(MatrixXcf(internal::random<int>(1,10),internal::random<int>(1,10))) );
|
|
CALL_SUBTEST_5( map_class_matrix(MatrixXi(internal::random<int>(1,10),internal::random<int>(1,10))) );
|
|
|
|
CALL_SUBTEST_6( map_static_methods(Matrix<double, 1, 1>()) );
|
|
CALL_SUBTEST_7( map_static_methods(Vector3f()) );
|
|
CALL_SUBTEST_8( map_static_methods(RowVector3d()) );
|
|
CALL_SUBTEST_9( map_static_methods(VectorXcd(8)) );
|
|
CALL_SUBTEST_10( map_static_methods(VectorXf(12)) );
|
|
}
|
|
}
|