mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-27 07:29:52 +08:00
579 lines
22 KiB
C++
579 lines
22 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include <cstdlib>
|
|
#include <cerrno>
|
|
#include <ctime>
|
|
#include <iostream>
|
|
#include <fstream>
|
|
#include <string>
|
|
#include <sstream>
|
|
#include <vector>
|
|
#include <typeinfo>
|
|
|
|
// The following includes of STL headers have to be done _before_ the
|
|
// definition of macros min() and max(). The reason is that many STL
|
|
// implementations will not work properly as the min and max symbols collide
|
|
// with the STL functions std:min() and std::max(). The STL headers may check
|
|
// for the macro definition of min/max and issue a warning or undefine the
|
|
// macros.
|
|
//
|
|
// Still, Windows defines min() and max() in windef.h as part of the regular
|
|
// Windows system interfaces and many other Windows APIs depend on these
|
|
// macros being available. To prevent the macro expansion of min/max and to
|
|
// make Eigen compatible with the Windows environment all function calls of
|
|
// std::min() and std::max() have to be written with parenthesis around the
|
|
// function name.
|
|
//
|
|
// All STL headers used by Eigen should be included here. Because main.h is
|
|
// included before any Eigen header and because the STL headers are guarded
|
|
// against multiple inclusions, no STL header will see our own min/max macro
|
|
// definitions.
|
|
#include <limits>
|
|
#include <algorithm>
|
|
#include <complex>
|
|
#include <deque>
|
|
#include <queue>
|
|
#include <list>
|
|
|
|
// To test that all calls from Eigen code to std::min() and std::max() are
|
|
// protected by parenthesis against macro expansion, the min()/max() macros
|
|
// are defined here and any not-parenthesized min/max call will cause a
|
|
// compiler error.
|
|
#define min(A,B) please_protect_your_min_with_parentheses
|
|
#define max(A,B) please_protect_your_max_with_parentheses
|
|
|
|
#define FORBIDDEN_IDENTIFIER (this_identifier_is_forbidden_to_avoid_clashes) this_identifier_is_forbidden_to_avoid_clashes
|
|
// B0 is defined in POSIX header termios.h
|
|
#define B0 FORBIDDEN_IDENTIFIER
|
|
|
|
// Unit tests calling Eigen's blas library must preserve the default blocking size
|
|
// to avoid troubles.
|
|
#ifndef EIGEN_NO_DEBUG_SMALL_PRODUCT_BLOCKS
|
|
#define EIGEN_DEBUG_SMALL_PRODUCT_BLOCKS
|
|
#endif
|
|
|
|
// shuts down ICC's remark #593: variable "XXX" was set but never used
|
|
#define TEST_SET_BUT_UNUSED_VARIABLE(X) EIGEN_UNUSED_VARIABLE(X)
|
|
|
|
// the following file is automatically generated by cmake
|
|
#include "split_test_helper.h"
|
|
|
|
#ifdef NDEBUG
|
|
#undef NDEBUG
|
|
#endif
|
|
|
|
// On windows CE, NDEBUG is automatically defined <assert.h> if NDEBUG is not defined.
|
|
#ifndef DEBUG
|
|
#define DEBUG
|
|
#endif
|
|
|
|
// bounds integer values for AltiVec
|
|
#if defined(__ALTIVEC__) || defined(__VSX__)
|
|
#define EIGEN_MAKING_DOCS
|
|
#endif
|
|
|
|
#ifndef EIGEN_TEST_FUNC
|
|
#error EIGEN_TEST_FUNC must be defined
|
|
#endif
|
|
|
|
#define DEFAULT_REPEAT 10
|
|
|
|
namespace Eigen
|
|
{
|
|
static std::vector<std::string> g_test_stack;
|
|
static int g_repeat;
|
|
static unsigned int g_seed;
|
|
static bool g_has_set_repeat, g_has_set_seed;
|
|
}
|
|
|
|
#define TRACK std::cerr << __FILE__ << " " << __LINE__ << std::endl
|
|
// #define TRACK while()
|
|
|
|
#define EI_PP_MAKE_STRING2(S) #S
|
|
#define EI_PP_MAKE_STRING(S) EI_PP_MAKE_STRING2(S)
|
|
|
|
#define EIGEN_DEFAULT_IO_FORMAT IOFormat(4, 0, " ", "\n", "", "", "", "")
|
|
|
|
#if (defined(_CPPUNWIND) || defined(__EXCEPTIONS)) && !defined(__CUDA_ARCH__)
|
|
#define EIGEN_EXCEPTIONS
|
|
#endif
|
|
|
|
#ifndef EIGEN_NO_ASSERTION_CHECKING
|
|
|
|
namespace Eigen
|
|
{
|
|
static const bool should_raise_an_assert = false;
|
|
|
|
// Used to avoid to raise two exceptions at a time in which
|
|
// case the exception is not properly caught.
|
|
// This may happen when a second exceptions is triggered in a destructor.
|
|
static bool no_more_assert = false;
|
|
static bool report_on_cerr_on_assert_failure = true;
|
|
|
|
struct eigen_assert_exception
|
|
{
|
|
eigen_assert_exception(void) {}
|
|
~eigen_assert_exception() { Eigen::no_more_assert = false; }
|
|
};
|
|
}
|
|
// If EIGEN_DEBUG_ASSERTS is defined and if no assertion is triggered while
|
|
// one should have been, then the list of excecuted assertions is printed out.
|
|
//
|
|
// EIGEN_DEBUG_ASSERTS is not enabled by default as it
|
|
// significantly increases the compilation time
|
|
// and might even introduce side effects that would hide
|
|
// some memory errors.
|
|
#ifdef EIGEN_DEBUG_ASSERTS
|
|
|
|
namespace Eigen
|
|
{
|
|
namespace internal
|
|
{
|
|
static bool push_assert = false;
|
|
}
|
|
static std::vector<std::string> eigen_assert_list;
|
|
}
|
|
#define eigen_assert(a) \
|
|
if( (!(a)) && (!no_more_assert) ) \
|
|
{ \
|
|
if(report_on_cerr_on_assert_failure) \
|
|
std::cerr << #a << " " __FILE__ << "(" << __LINE__ << ")\n"; \
|
|
Eigen::no_more_assert = true; \
|
|
EIGEN_THROW_X(Eigen::eigen_assert_exception()); \
|
|
} \
|
|
else if (Eigen::internal::push_assert) \
|
|
{ \
|
|
eigen_assert_list.push_back(std::string(EI_PP_MAKE_STRING(__FILE__) " (" EI_PP_MAKE_STRING(__LINE__) ") : " #a) ); \
|
|
}
|
|
|
|
#ifdef EIGEN_EXCEPTIONS
|
|
#define VERIFY_RAISES_ASSERT(a) \
|
|
{ \
|
|
Eigen::no_more_assert = false; \
|
|
Eigen::eigen_assert_list.clear(); \
|
|
Eigen::internal::push_assert = true; \
|
|
Eigen::report_on_cerr_on_assert_failure = false; \
|
|
try { \
|
|
a; \
|
|
std::cerr << "One of the following asserts should have been triggered:\n"; \
|
|
for (uint ai=0 ; ai<eigen_assert_list.size() ; ++ai) \
|
|
std::cerr << " " << eigen_assert_list[ai] << "\n"; \
|
|
VERIFY(Eigen::should_raise_an_assert && # a); \
|
|
} catch (Eigen::eigen_assert_exception) { \
|
|
Eigen::internal::push_assert = false; VERIFY(true); \
|
|
} \
|
|
Eigen::report_on_cerr_on_assert_failure = true; \
|
|
Eigen::internal::push_assert = false; \
|
|
}
|
|
#endif //EIGEN_EXCEPTIONS
|
|
|
|
#elif !defined(__CUDACC__) // EIGEN_DEBUG_ASSERTS
|
|
// see bug 89. The copy_bool here is working around a bug in gcc <= 4.3
|
|
#define eigen_assert(a) \
|
|
if( (!Eigen::internal::copy_bool(a)) && (!no_more_assert) )\
|
|
{ \
|
|
Eigen::no_more_assert = true; \
|
|
if(report_on_cerr_on_assert_failure) \
|
|
eigen_plain_assert(a); \
|
|
else \
|
|
EIGEN_THROW_X(Eigen::eigen_assert_exception()); \
|
|
}
|
|
#ifdef EIGEN_EXCEPTIONS
|
|
#define VERIFY_RAISES_ASSERT(a) { \
|
|
Eigen::no_more_assert = false; \
|
|
Eigen::report_on_cerr_on_assert_failure = false; \
|
|
try { \
|
|
a; \
|
|
VERIFY(Eigen::should_raise_an_assert && # a); \
|
|
} \
|
|
catch (Eigen::eigen_assert_exception&) { VERIFY(true); } \
|
|
Eigen::report_on_cerr_on_assert_failure = true; \
|
|
}
|
|
#endif //EIGEN_EXCEPTIONS
|
|
#endif // EIGEN_DEBUG_ASSERTS
|
|
|
|
#ifndef VERIFY_RAISES_ASSERT
|
|
#define VERIFY_RAISES_ASSERT(a) \
|
|
std::cout << "Can't VERIFY_RAISES_ASSERT( " #a " ) with exceptions disabled\n";
|
|
#endif
|
|
|
|
#if !defined(__CUDACC__)
|
|
#define EIGEN_USE_CUSTOM_ASSERT
|
|
#endif
|
|
|
|
#else // EIGEN_NO_ASSERTION_CHECKING
|
|
|
|
#define VERIFY_RAISES_ASSERT(a) {}
|
|
|
|
#endif // EIGEN_NO_ASSERTION_CHECKING
|
|
|
|
|
|
#define EIGEN_INTERNAL_DEBUGGING
|
|
#include <Eigen/QR> // required for createRandomPIMatrixOfRank
|
|
|
|
inline void verify_impl(bool condition, const char *testname, const char *file, int line, const char *condition_as_string)
|
|
{
|
|
if (!condition)
|
|
{
|
|
std::cerr << "Test " << testname << " failed in " << file << " (" << line << ")"
|
|
<< std::endl << " " << condition_as_string << std::endl;
|
|
std::cerr << "Stack:\n";
|
|
const int test_stack_size = static_cast<int>(Eigen::g_test_stack.size());
|
|
for(int i=test_stack_size-1; i>=0; --i)
|
|
std::cerr << " - " << Eigen::g_test_stack[i] << "\n";
|
|
std::cerr << "\n";
|
|
abort();
|
|
}
|
|
}
|
|
|
|
#define VERIFY(a) ::verify_impl(a, g_test_stack.back().c_str(), __FILE__, __LINE__, EI_PP_MAKE_STRING(a))
|
|
|
|
#define VERIFY_IS_EQUAL(a, b) VERIFY(test_is_equal(a, b))
|
|
#define VERIFY_IS_APPROX(a, b) VERIFY(test_isApprox(a, b))
|
|
#define VERIFY_IS_NOT_APPROX(a, b) VERIFY(!test_isApprox(a, b))
|
|
#define VERIFY_IS_MUCH_SMALLER_THAN(a, b) VERIFY(test_isMuchSmallerThan(a, b))
|
|
#define VERIFY_IS_NOT_MUCH_SMALLER_THAN(a, b) VERIFY(!test_isMuchSmallerThan(a, b))
|
|
#define VERIFY_IS_APPROX_OR_LESS_THAN(a, b) VERIFY(test_isApproxOrLessThan(a, b))
|
|
#define VERIFY_IS_NOT_APPROX_OR_LESS_THAN(a, b) VERIFY(!test_isApproxOrLessThan(a, b))
|
|
|
|
#define VERIFY_IS_UNITARY(a) VERIFY(test_isUnitary(a))
|
|
|
|
#define CALL_SUBTEST(FUNC) do { \
|
|
g_test_stack.push_back(EI_PP_MAKE_STRING(FUNC)); \
|
|
FUNC; \
|
|
g_test_stack.pop_back(); \
|
|
} while (0)
|
|
|
|
|
|
namespace Eigen {
|
|
|
|
template<typename T> inline typename NumTraits<T>::Real test_precision() { return NumTraits<T>::dummy_precision(); }
|
|
template<> inline float test_precision<float>() { return 1e-3f; }
|
|
template<> inline double test_precision<double>() { return 1e-6; }
|
|
template<> inline float test_precision<std::complex<float> >() { return test_precision<float>(); }
|
|
template<> inline double test_precision<std::complex<double> >() { return test_precision<double>(); }
|
|
template<> inline long double test_precision<long double>() { return 1e-6; }
|
|
|
|
inline bool test_isApprox(const int& a, const int& b)
|
|
{ return internal::isApprox(a, b, test_precision<int>()); }
|
|
inline bool test_isMuchSmallerThan(const int& a, const int& b)
|
|
{ return internal::isMuchSmallerThan(a, b, test_precision<int>()); }
|
|
inline bool test_isApproxOrLessThan(const int& a, const int& b)
|
|
{ return internal::isApproxOrLessThan(a, b, test_precision<int>()); }
|
|
|
|
inline bool test_isApprox(const float& a, const float& b)
|
|
{ return internal::isApprox(a, b, test_precision<float>()); }
|
|
inline bool test_isMuchSmallerThan(const float& a, const float& b)
|
|
{ return internal::isMuchSmallerThan(a, b, test_precision<float>()); }
|
|
inline bool test_isApproxOrLessThan(const float& a, const float& b)
|
|
{ return internal::isApproxOrLessThan(a, b, test_precision<float>()); }
|
|
inline bool test_isApprox(const double& a, const double& b)
|
|
{ return internal::isApprox(a, b, test_precision<double>()); }
|
|
|
|
inline bool test_isMuchSmallerThan(const double& a, const double& b)
|
|
{ return internal::isMuchSmallerThan(a, b, test_precision<double>()); }
|
|
inline bool test_isApproxOrLessThan(const double& a, const double& b)
|
|
{ return internal::isApproxOrLessThan(a, b, test_precision<double>()); }
|
|
|
|
#ifndef EIGEN_TEST_NO_COMPLEX
|
|
inline bool test_isApprox(const std::complex<float>& a, const std::complex<float>& b)
|
|
{ return internal::isApprox(a, b, test_precision<std::complex<float> >()); }
|
|
inline bool test_isMuchSmallerThan(const std::complex<float>& a, const std::complex<float>& b)
|
|
{ return internal::isMuchSmallerThan(a, b, test_precision<std::complex<float> >()); }
|
|
|
|
inline bool test_isApprox(const std::complex<double>& a, const std::complex<double>& b)
|
|
{ return internal::isApprox(a, b, test_precision<std::complex<double> >()); }
|
|
inline bool test_isMuchSmallerThan(const std::complex<double>& a, const std::complex<double>& b)
|
|
{ return internal::isMuchSmallerThan(a, b, test_precision<std::complex<double> >()); }
|
|
#endif
|
|
|
|
#ifndef EIGEN_TEST_NO_LONGDOUBLE
|
|
inline bool test_isApprox(const long double& a, const long double& b)
|
|
{
|
|
bool ret = internal::isApprox(a, b, test_precision<long double>());
|
|
if (!ret) std::cerr
|
|
<< std::endl << " actual = " << a
|
|
<< std::endl << " expected = " << b << std::endl << std::endl;
|
|
return ret;
|
|
}
|
|
|
|
inline bool test_isMuchSmallerThan(const long double& a, const long double& b)
|
|
{ return internal::isMuchSmallerThan(a, b, test_precision<long double>()); }
|
|
inline bool test_isApproxOrLessThan(const long double& a, const long double& b)
|
|
{ return internal::isApproxOrLessThan(a, b, test_precision<long double>()); }
|
|
#endif // EIGEN_TEST_NO_LONGDOUBLE
|
|
|
|
template<typename Type1, typename Type2>
|
|
inline bool test_isApprox(const Type1& a, const Type2& b)
|
|
{
|
|
return a.isApprox(b, test_precision<typename Type1::Scalar>());
|
|
}
|
|
|
|
// The idea behind this function is to compare the two scalars a and b where
|
|
// the scalar ref is a hint about the expected order of magnitude of a and b.
|
|
// WARNING: the scalar a and b must be positive
|
|
// Therefore, if for some reason a and b are very small compared to ref,
|
|
// we won't issue a false negative.
|
|
// This test could be: abs(a-b) <= eps * ref
|
|
// However, it seems that simply comparing a+ref and b+ref is more sensitive to true error.
|
|
template<typename Scalar,typename ScalarRef>
|
|
inline bool test_isApproxWithRef(const Scalar& a, const Scalar& b, const ScalarRef& ref)
|
|
{
|
|
return test_isApprox(a+ref, b+ref);
|
|
}
|
|
|
|
template<typename Derived1, typename Derived2>
|
|
inline bool test_isMuchSmallerThan(const MatrixBase<Derived1>& m1,
|
|
const MatrixBase<Derived2>& m2)
|
|
{
|
|
return m1.isMuchSmallerThan(m2, test_precision<typename internal::traits<Derived1>::Scalar>());
|
|
}
|
|
|
|
template<typename Derived>
|
|
inline bool test_isMuchSmallerThan(const MatrixBase<Derived>& m,
|
|
const typename NumTraits<typename internal::traits<Derived>::Scalar>::Real& s)
|
|
{
|
|
return m.isMuchSmallerThan(s, test_precision<typename internal::traits<Derived>::Scalar>());
|
|
}
|
|
|
|
template<typename Derived>
|
|
inline bool test_isUnitary(const MatrixBase<Derived>& m)
|
|
{
|
|
return m.isUnitary(test_precision<typename internal::traits<Derived>::Scalar>());
|
|
}
|
|
|
|
// Forward declaration to avoid ICC warning
|
|
template<typename T, typename U>
|
|
bool test_is_equal(const T& actual, const U& expected);
|
|
|
|
template<typename T, typename U>
|
|
bool test_is_equal(const T& actual, const U& expected)
|
|
{
|
|
if (actual==expected)
|
|
return true;
|
|
// false:
|
|
std::cerr
|
|
<< std::endl << " actual = " << actual
|
|
<< std::endl << " expected = " << expected << std::endl << std::endl;
|
|
return false;
|
|
}
|
|
|
|
/** Creates a random Partial Isometry matrix of given rank.
|
|
*
|
|
* A partial isometry is a matrix all of whose singular values are either 0 or 1.
|
|
* This is very useful to test rank-revealing algorithms.
|
|
*/
|
|
// Forward declaration to avoid ICC warning
|
|
template<typename MatrixType>
|
|
void createRandomPIMatrixOfRank(typename MatrixType::Index desired_rank, typename MatrixType::Index rows, typename MatrixType::Index cols, MatrixType& m);
|
|
template<typename MatrixType>
|
|
void createRandomPIMatrixOfRank(typename MatrixType::Index desired_rank, typename MatrixType::Index rows, typename MatrixType::Index cols, MatrixType& m)
|
|
{
|
|
typedef typename internal::traits<MatrixType>::Index Index;
|
|
typedef typename internal::traits<MatrixType>::Scalar Scalar;
|
|
enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime };
|
|
|
|
typedef Matrix<Scalar, Dynamic, 1> VectorType;
|
|
typedef Matrix<Scalar, Rows, Rows> MatrixAType;
|
|
typedef Matrix<Scalar, Cols, Cols> MatrixBType;
|
|
|
|
if(desired_rank == 0)
|
|
{
|
|
m.setZero(rows,cols);
|
|
return;
|
|
}
|
|
|
|
if(desired_rank == 1)
|
|
{
|
|
// here we normalize the vectors to get a partial isometry
|
|
m = VectorType::Random(rows).normalized() * VectorType::Random(cols).normalized().transpose();
|
|
return;
|
|
}
|
|
|
|
MatrixAType a = MatrixAType::Random(rows,rows);
|
|
MatrixType d = MatrixType::Identity(rows,cols);
|
|
MatrixBType b = MatrixBType::Random(cols,cols);
|
|
|
|
// set the diagonal such that only desired_rank non-zero entries reamain
|
|
const Index diag_size = (std::min)(d.rows(),d.cols());
|
|
if(diag_size != desired_rank)
|
|
d.diagonal().segment(desired_rank, diag_size-desired_rank) = VectorType::Zero(diag_size-desired_rank);
|
|
|
|
HouseholderQR<MatrixAType> qra(a);
|
|
HouseholderQR<MatrixBType> qrb(b);
|
|
m = qra.householderQ() * d * qrb.householderQ();
|
|
}
|
|
|
|
// Forward declaration to avoid ICC warning
|
|
template<typename PermutationVectorType>
|
|
void randomPermutationVector(PermutationVectorType& v, typename PermutationVectorType::Index size);
|
|
template<typename PermutationVectorType>
|
|
void randomPermutationVector(PermutationVectorType& v, typename PermutationVectorType::Index size)
|
|
{
|
|
typedef typename PermutationVectorType::Index Index;
|
|
typedef typename PermutationVectorType::Scalar Scalar;
|
|
v.resize(size);
|
|
for(Index i = 0; i < size; ++i) v(i) = Scalar(i);
|
|
if(size == 1) return;
|
|
for(Index n = 0; n < 3 * size; ++n)
|
|
{
|
|
Index i = internal::random<Index>(0, size-1);
|
|
Index j;
|
|
do j = internal::random<Index>(0, size-1); while(j==i);
|
|
std::swap(v(i), v(j));
|
|
}
|
|
}
|
|
|
|
template<typename T> bool isNotNaN(const T& x)
|
|
{
|
|
return x==x;
|
|
}
|
|
|
|
template<typename T> bool isNaN(const T& x)
|
|
{
|
|
return x!=x;
|
|
}
|
|
|
|
template<typename T> bool isInf(const T& x)
|
|
{
|
|
return x > NumTraits<T>::highest();
|
|
}
|
|
|
|
template<typename T> bool isMinusInf(const T& x)
|
|
{
|
|
return x < NumTraits<T>::lowest();
|
|
}
|
|
|
|
} // end namespace Eigen
|
|
|
|
template<typename T> struct GetDifferentType;
|
|
|
|
template<> struct GetDifferentType<float> { typedef double type; };
|
|
template<> struct GetDifferentType<double> { typedef float type; };
|
|
template<typename T> struct GetDifferentType<std::complex<T> >
|
|
{ typedef std::complex<typename GetDifferentType<T>::type> type; };
|
|
|
|
// Forward declaration to avoid ICC warning
|
|
template<typename T> std::string type_name();
|
|
template<typename T> std::string type_name() { return "other"; }
|
|
template<> std::string type_name<float>() { return "float"; }
|
|
template<> std::string type_name<double>() { return "double"; }
|
|
template<> std::string type_name<int>() { return "int"; }
|
|
template<> std::string type_name<std::complex<float> >() { return "complex<float>"; }
|
|
template<> std::string type_name<std::complex<double> >() { return "complex<double>"; }
|
|
template<> std::string type_name<std::complex<int> >() { return "complex<int>"; }
|
|
|
|
// forward declaration of the main test function
|
|
void EIGEN_CAT(test_,EIGEN_TEST_FUNC)();
|
|
|
|
using namespace Eigen;
|
|
|
|
inline void set_repeat_from_string(const char *str)
|
|
{
|
|
errno = 0;
|
|
g_repeat = int(strtoul(str, 0, 10));
|
|
if(errno || g_repeat <= 0)
|
|
{
|
|
std::cout << "Invalid repeat value " << str << std::endl;
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
g_has_set_repeat = true;
|
|
}
|
|
|
|
inline void set_seed_from_string(const char *str)
|
|
{
|
|
errno = 0;
|
|
g_seed = int(strtoul(str, 0, 10));
|
|
if(errno || g_seed == 0)
|
|
{
|
|
std::cout << "Invalid seed value " << str << std::endl;
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
g_has_set_seed = true;
|
|
}
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
g_has_set_repeat = false;
|
|
g_has_set_seed = false;
|
|
bool need_help = false;
|
|
|
|
for(int i = 1; i < argc; i++)
|
|
{
|
|
if(argv[i][0] == 'r')
|
|
{
|
|
if(g_has_set_repeat)
|
|
{
|
|
std::cout << "Argument " << argv[i] << " conflicting with a former argument" << std::endl;
|
|
return 1;
|
|
}
|
|
set_repeat_from_string(argv[i]+1);
|
|
}
|
|
else if(argv[i][0] == 's')
|
|
{
|
|
if(g_has_set_seed)
|
|
{
|
|
std::cout << "Argument " << argv[i] << " conflicting with a former argument" << std::endl;
|
|
return 1;
|
|
}
|
|
set_seed_from_string(argv[i]+1);
|
|
}
|
|
else
|
|
{
|
|
need_help = true;
|
|
}
|
|
}
|
|
|
|
if(need_help)
|
|
{
|
|
std::cout << "This test application takes the following optional arguments:" << std::endl;
|
|
std::cout << " rN Repeat each test N times (default: " << DEFAULT_REPEAT << ")" << std::endl;
|
|
std::cout << " sN Use N as seed for random numbers (default: based on current time)" << std::endl;
|
|
std::cout << std::endl;
|
|
std::cout << "If defined, the environment variables EIGEN_REPEAT and EIGEN_SEED" << std::endl;
|
|
std::cout << "will be used as default values for these parameters." << std::endl;
|
|
return 1;
|
|
}
|
|
|
|
char *env_EIGEN_REPEAT = getenv("EIGEN_REPEAT");
|
|
if(!g_has_set_repeat && env_EIGEN_REPEAT)
|
|
set_repeat_from_string(env_EIGEN_REPEAT);
|
|
char *env_EIGEN_SEED = getenv("EIGEN_SEED");
|
|
if(!g_has_set_seed && env_EIGEN_SEED)
|
|
set_seed_from_string(env_EIGEN_SEED);
|
|
|
|
if(!g_has_set_seed) g_seed = (unsigned int) time(NULL);
|
|
if(!g_has_set_repeat) g_repeat = DEFAULT_REPEAT;
|
|
|
|
std::cout << "Initializing random number generator with seed " << g_seed << std::endl;
|
|
std::stringstream ss;
|
|
ss << "Seed: " << g_seed;
|
|
g_test_stack.push_back(ss.str());
|
|
srand(g_seed);
|
|
std::cout << "Repeating each test " << g_repeat << " times" << std::endl;
|
|
|
|
Eigen::g_test_stack.push_back(std::string(EI_PP_MAKE_STRING(EIGEN_TEST_FUNC)));
|
|
|
|
EIGEN_CAT(test_,EIGEN_TEST_FUNC)();
|
|
return 0;
|
|
}
|
|
|
|
// These warning are disabled here such that they are still ON when parsing Eigen's header files.
|
|
#if defined __INTEL_COMPILER
|
|
// remark #383: value copied to temporary, reference to temporary used
|
|
// -> this warning is raised even for legal usage as: g_test_stack.push_back("foo"); where g_test_stack is a std::vector<std::string>
|
|
// remark #1418: external function definition with no prior declaration
|
|
// -> this warning is raised for all our test functions. Declaring them static would fix the issue.
|
|
// warning #279: controlling expression is constant
|
|
// remark #1572: floating-point equality and inequality comparisons are unreliable
|
|
#pragma warning disable 279 383 1418 1572
|
|
#endif
|