eigen/unsupported/test/cxx11_tensor_random.cpp
Antonio Sanchez 17268b155d Add bit_cast for half/bfloat to/from uint16_t, fix TensorRandom
The existing `TensorRandom.h` implementation makes the assumption that
`half` (`bfloat16`) has a `uint16_t` member `x` (`value`), which is not
always true. This currently fails on arm64, where `x` has type `__fp16`.
Added `bit_cast` specializations to allow casting to/from `uint16_t`
for both `half` and `bfloat16`.  Also added tests in
`half_float`, `bfloat16_float`, and `cxx11_tensor_random` to catch
these errors in the future.
2020-11-18 20:32:35 +00:00

87 lines
2.5 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/CXX11/Tensor>
template<typename Scalar>
static void test_default()
{
Tensor<Scalar, 1> vec(6);
vec.setRandom();
// Fixme: we should check that the generated numbers follow a uniform
// distribution instead.
for (int i = 1; i < 6; ++i) {
VERIFY_IS_NOT_EQUAL(vec(i), vec(i-1));
}
}
template<typename Scalar>
static void test_normal()
{
Tensor<Scalar, 1> vec(6);
vec.template setRandom<Eigen::internal::NormalRandomGenerator<Scalar>>();
// Fixme: we should check that the generated numbers follow a gaussian
// distribution instead.
for (int i = 1; i < 6; ++i) {
VERIFY_IS_NOT_EQUAL(vec(i), vec(i-1));
}
}
struct MyGenerator {
MyGenerator() { }
MyGenerator(const MyGenerator&) { }
// Return a random value to be used. "element_location" is the
// location of the entry to set in the tensor, it can typically
// be ignored.
int operator()(Eigen::DenseIndex element_location, Eigen::DenseIndex /*unused*/ = 0) const {
return static_cast<int>(3 * element_location);
}
// Same as above but generates several numbers at a time.
internal::packet_traits<int>::type packetOp(
Eigen::DenseIndex packet_location, Eigen::DenseIndex /*unused*/ = 0) const {
const int packetSize = internal::packet_traits<int>::size;
EIGEN_ALIGN_MAX int values[packetSize];
for (int i = 0; i < packetSize; ++i) {
values[i] = static_cast<int>(3 * (packet_location + i));
}
return internal::pload<typename internal::packet_traits<int>::type>(values);
}
};
static void test_custom()
{
Tensor<int, 1> vec(6);
vec.setRandom<MyGenerator>();
for (int i = 0; i < 6; ++i) {
VERIFY_IS_EQUAL(vec(i), 3*i);
}
}
EIGEN_DECLARE_TEST(cxx11_tensor_random)
{
CALL_SUBTEST((test_default<float>()));
CALL_SUBTEST((test_normal<float>()));
CALL_SUBTEST((test_default<double>()));
CALL_SUBTEST((test_normal<double>()));
CALL_SUBTEST((test_default<Eigen::half>()));
CALL_SUBTEST((test_normal<Eigen::half>()));
CALL_SUBTEST((test_default<Eigen::bfloat16>()));
CALL_SUBTEST((test_normal<Eigen::bfloat16>()));
CALL_SUBTEST(test_custom());
}