mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-12 14:25:16 +08:00
169 lines
5.0 KiB
C++
169 lines
5.0 KiB
C++
//=====================================================
|
|
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
|
//=====================================================
|
|
//
|
|
// This program is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License
|
|
// as published by the Free Software Foundation; either version 2
|
|
// of the License, or (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program; if not, write to the Free Software
|
|
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
//
|
|
#ifndef EIGEN2_INTERFACE_HH
|
|
#define EIGEN2_INTERFACE_HH
|
|
// #include <cblas.h>
|
|
#include <Eigen/Core>
|
|
#include <Eigen/Cholesky>
|
|
#include <Eigen/LU>
|
|
#include <Eigen/QR>
|
|
#include <vector>
|
|
#include "btl.hh"
|
|
|
|
using namespace Eigen;
|
|
|
|
template<class real, int SIZE=Dynamic>
|
|
class eigen2_interface
|
|
{
|
|
|
|
public :
|
|
|
|
enum {IsFixedSize = (SIZE!=Dynamic)};
|
|
|
|
typedef real real_type;
|
|
|
|
typedef std::vector<real> stl_vector;
|
|
typedef std::vector<stl_vector> stl_matrix;
|
|
|
|
typedef Eigen::Matrix<real,SIZE,SIZE> gene_matrix;
|
|
typedef Eigen::Matrix<real,SIZE,1> gene_vector;
|
|
|
|
static inline std::string name( void )
|
|
{
|
|
#if defined(EIGEN_VECTORIZE_SSE)
|
|
if (SIZE==Dynamic) return "eigen2"; else return "tiny_eigen2";
|
|
#elif defined(EIGEN_VECTORIZE_ALTIVEC)
|
|
if (SIZE==Dynamic) return "eigen2"; else return "tiny_eigen2";
|
|
#else
|
|
if (SIZE==Dynamic) return "eigen2_novec"; else return "tiny_eigen2_novec";
|
|
#endif
|
|
}
|
|
|
|
static void free_matrix(gene_matrix & A, int N) {}
|
|
|
|
static void free_vector(gene_vector & B) {}
|
|
|
|
static BTL_DONT_INLINE void matrix_from_stl(gene_matrix & A, stl_matrix & A_stl){
|
|
A.resize(A_stl[0].size(), A_stl.size());
|
|
|
|
for (int j=0; j<A_stl.size() ; j++){
|
|
for (int i=0; i<A_stl[j].size() ; i++){
|
|
A.coeffRef(i,j) = A_stl[j][i];
|
|
}
|
|
}
|
|
}
|
|
|
|
static BTL_DONT_INLINE void vector_from_stl(gene_vector & B, stl_vector & B_stl){
|
|
B.resize(B_stl.size(),1);
|
|
|
|
for (int i=0; i<B_stl.size() ; i++){
|
|
B.coeffRef(i) = B_stl[i];
|
|
}
|
|
}
|
|
|
|
static BTL_DONT_INLINE void vector_to_stl(gene_vector & B, stl_vector & B_stl){
|
|
for (int i=0; i<B_stl.size() ; i++){
|
|
B_stl[i] = B.coeff(i);
|
|
}
|
|
}
|
|
|
|
static BTL_DONT_INLINE void matrix_to_stl(gene_matrix & A, stl_matrix & A_stl){
|
|
int N=A_stl.size();
|
|
|
|
for (int j=0;j<N;j++){
|
|
A_stl[j].resize(N);
|
|
for (int i=0;i<N;i++){
|
|
A_stl[j][i] = A.coeff(i,j);
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline void matrix_matrix_product(const gene_matrix & A, const gene_matrix & B, gene_matrix & X, int N){
|
|
X = (A*B).lazy();
|
|
}
|
|
|
|
static inline void transposed_matrix_matrix_product(const gene_matrix & A, const gene_matrix & B, gene_matrix & X, int N){
|
|
X = (A.transpose()*B.transpose()).lazy();
|
|
}
|
|
|
|
static inline void ata_product(const gene_matrix & A, gene_matrix & X, int N){
|
|
X = (A.transpose()*A).lazy();
|
|
}
|
|
|
|
static inline void aat_product(const gene_matrix & A, gene_matrix & X, int N){
|
|
X = (A*A.transpose()).lazy();
|
|
}
|
|
|
|
static inline void matrix_vector_product(const gene_matrix & __restrict__ A, const gene_vector & __restrict__ B, gene_vector & __restrict__ X, int N){
|
|
X = (A*B)/*.lazy()*/;
|
|
}
|
|
|
|
static inline void atv_product(gene_matrix & A, gene_vector & B, gene_vector & X, int N){
|
|
X = (A.transpose()*B)/*.lazy()*/;
|
|
}
|
|
|
|
static inline void axpy(real coef, const gene_vector & X, gene_vector & Y, int N){
|
|
Y += coef * X;
|
|
}
|
|
|
|
static inline void axpby(real a, const gene_vector & X, real b, gene_vector & Y, int N){
|
|
Y = a*X + b*Y;
|
|
}
|
|
|
|
static inline void copy_matrix(const gene_matrix & source, gene_matrix & cible, int N){
|
|
cible = source;
|
|
}
|
|
|
|
static inline void copy_vector(const gene_vector & source, gene_vector & cible, int N){
|
|
cible = source;
|
|
}
|
|
|
|
static inline void trisolve_lower(const gene_matrix & L, const gene_vector& B, gene_vector& X, int N){
|
|
X = L.template marked<Lower>().solveTriangular(B);
|
|
}
|
|
|
|
static inline void trisolve_lower_matrix(const gene_matrix & L, const gene_matrix& B, gene_matrix& X, int N){
|
|
X = L.template marked<Lower>().solveTriangular(B);
|
|
}
|
|
|
|
static inline void cholesky(const gene_matrix & X, gene_matrix & C, int N){
|
|
C = X.cholesky().matrixL();
|
|
// C = X;
|
|
// Cholesky<gene_matrix>::computeInPlace(C);
|
|
// Cholesky<gene_matrix>::computeInPlaceBlock(C);
|
|
}
|
|
|
|
static inline void lu_decomp(const gene_matrix & X, gene_matrix & C, int N){
|
|
C = X.lu().matrixLU();
|
|
// C = X.inverse();
|
|
}
|
|
|
|
static inline void tridiagonalization(const gene_matrix & X, gene_matrix & C, int N){
|
|
C = Tridiagonalization<gene_matrix>(X).packedMatrix();
|
|
}
|
|
|
|
static inline void hessenberg(const gene_matrix & X, gene_matrix & C, int N){
|
|
C = HessenbergDecomposition<gene_matrix>(X).packedMatrix();
|
|
}
|
|
|
|
|
|
|
|
};
|
|
|
|
#endif
|