mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-15 07:10:37 +08:00
114 lines
3.5 KiB
C++
114 lines
3.5 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra. Eigen itself is part of the KDE project.
|
|
//
|
|
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#define EIGEN_NO_ASSERTION_CHECKING
|
|
#include "main.h"
|
|
#include <Eigen/Cholesky>
|
|
#include <Eigen/LU>
|
|
|
|
#ifdef HAS_GSL
|
|
#include "gsl_helper.h"
|
|
#endif
|
|
|
|
template<typename MatrixType> void cholesky(const MatrixType& m)
|
|
{
|
|
/* this test covers the following files:
|
|
LLT.h LDLT.h
|
|
*/
|
|
int rows = m.rows();
|
|
int cols = m.cols();
|
|
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
|
|
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
|
|
|
MatrixType a0 = MatrixType::Random(rows,cols);
|
|
VectorType vecB = VectorType::Random(rows), vecX(rows);
|
|
MatrixType matB = MatrixType::Random(rows,cols), matX(rows,cols);
|
|
SquareMatrixType symm = a0 * a0.adjoint();
|
|
// let's make sure the matrix is not singular or near singular
|
|
MatrixType a1 = MatrixType::Random(rows,cols);
|
|
symm += a1 * a1.adjoint();
|
|
|
|
#ifdef HAS_GSL
|
|
if (ei_is_same_type<RealScalar,double>::ret)
|
|
{
|
|
typedef GslTraits<Scalar> Gsl;
|
|
typename Gsl::Matrix gMatA=0, gSymm=0;
|
|
typename Gsl::Vector gVecB=0, gVecX=0;
|
|
convert<MatrixType>(symm, gSymm);
|
|
convert<MatrixType>(symm, gMatA);
|
|
convert<VectorType>(vecB, gVecB);
|
|
convert<VectorType>(vecB, gVecX);
|
|
Gsl::cholesky(gMatA);
|
|
Gsl::cholesky_solve(gMatA, gVecB, gVecX);
|
|
VectorType vecX(rows), _vecX, _vecB;
|
|
convert(gVecX, _vecX);
|
|
symm.llt().solve(vecB, &vecX);
|
|
Gsl::prod(gSymm, gVecX, gVecB);
|
|
convert(gVecB, _vecB);
|
|
// test gsl itself !
|
|
VERIFY_IS_APPROX(vecB, _vecB);
|
|
VERIFY_IS_APPROX(vecX, _vecX);
|
|
|
|
Gsl::free(gMatA);
|
|
Gsl::free(gSymm);
|
|
Gsl::free(gVecB);
|
|
Gsl::free(gVecX);
|
|
}
|
|
#endif
|
|
|
|
{
|
|
LDLT<SquareMatrixType> ldlt(symm);
|
|
VERIFY(ldlt.isPositiveDefinite());
|
|
// in eigen3, LDLT is pivoting
|
|
//VERIFY_IS_APPROX(symm, ldlt.matrixL() * ldlt.vectorD().asDiagonal() * ldlt.matrixL().adjoint());
|
|
ldlt.solve(vecB, &vecX);
|
|
VERIFY_IS_APPROX(symm * vecX, vecB);
|
|
ldlt.solve(matB, &matX);
|
|
VERIFY_IS_APPROX(symm * matX, matB);
|
|
}
|
|
|
|
{
|
|
LLT<SquareMatrixType> chol(symm);
|
|
VERIFY(chol.isPositiveDefinite());
|
|
VERIFY_IS_APPROX(symm, chol.matrixL() * chol.matrixL().adjoint());
|
|
chol.solve(vecB, &vecX);
|
|
VERIFY_IS_APPROX(symm * vecX, vecB);
|
|
chol.solve(matB, &matX);
|
|
VERIFY_IS_APPROX(symm * matX, matB);
|
|
}
|
|
|
|
#if 0 // cholesky is not rank-revealing anyway
|
|
// test isPositiveDefinite on non definite matrix
|
|
if (rows>4)
|
|
{
|
|
SquareMatrixType symm = a0.block(0,0,rows,cols-4) * a0.block(0,0,rows,cols-4).adjoint();
|
|
LLT<SquareMatrixType> chol(symm);
|
|
VERIFY(!chol.isPositiveDefinite());
|
|
LDLT<SquareMatrixType> cholnosqrt(symm);
|
|
VERIFY(!cholnosqrt.isPositiveDefinite());
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void test_eigen2_cholesky()
|
|
{
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1( cholesky(Matrix<double,1,1>()) );
|
|
CALL_SUBTEST_2( cholesky(Matrix2d()) );
|
|
CALL_SUBTEST_3( cholesky(Matrix3f()) );
|
|
CALL_SUBTEST_4( cholesky(Matrix4d()) );
|
|
CALL_SUBTEST_5( cholesky(MatrixXcd(7,7)) );
|
|
CALL_SUBTEST_6( cholesky(MatrixXf(17,17)) );
|
|
CALL_SUBTEST_7( cholesky(MatrixXd(33,33)) );
|
|
}
|
|
}
|