mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-06 14:14:46 +08:00
82f0ce2726
This provide several advantages: - more flexibility in designing unit tests - unit tests can be glued to speed up compilation - unit tests are compiled with same predefined macros, which is a requirement for zapcc
111 lines
2.9 KiB
C++
111 lines
2.9 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2016 Igor Babuschkin <igor@babuschk.in>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include "main.h"
|
|
#include <limits>
|
|
#include <numeric>
|
|
#include <Eigen/CXX11/Tensor>
|
|
|
|
using Eigen::Tensor;
|
|
|
|
template <int DataLayout, typename Type=float, bool Exclusive = false>
|
|
static void test_1d_scan()
|
|
{
|
|
int size = 50;
|
|
Tensor<Type, 1, DataLayout> tensor(size);
|
|
tensor.setRandom();
|
|
Tensor<Type, 1, DataLayout> result = tensor.cumsum(0, Exclusive);
|
|
|
|
VERIFY_IS_EQUAL(tensor.dimension(0), result.dimension(0));
|
|
|
|
float accum = 0;
|
|
for (int i = 0; i < size; i++) {
|
|
if (Exclusive) {
|
|
VERIFY_IS_EQUAL(result(i), accum);
|
|
accum += tensor(i);
|
|
} else {
|
|
accum += tensor(i);
|
|
VERIFY_IS_EQUAL(result(i), accum);
|
|
}
|
|
}
|
|
|
|
accum = 1;
|
|
result = tensor.cumprod(0, Exclusive);
|
|
for (int i = 0; i < size; i++) {
|
|
if (Exclusive) {
|
|
VERIFY_IS_EQUAL(result(i), accum);
|
|
accum *= tensor(i);
|
|
} else {
|
|
accum *= tensor(i);
|
|
VERIFY_IS_EQUAL(result(i), accum);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <int DataLayout, typename Type=float>
|
|
static void test_4d_scan()
|
|
{
|
|
int size = 5;
|
|
Tensor<Type, 4, DataLayout> tensor(size, size, size, size);
|
|
tensor.setRandom();
|
|
|
|
Tensor<Type, 4, DataLayout> result(size, size, size, size);
|
|
|
|
result = tensor.cumsum(0);
|
|
float accum = 0;
|
|
for (int i = 0; i < size; i++) {
|
|
accum += tensor(i, 1, 2, 3);
|
|
VERIFY_IS_EQUAL(result(i, 1, 2, 3), accum);
|
|
}
|
|
result = tensor.cumsum(1);
|
|
accum = 0;
|
|
for (int i = 0; i < size; i++) {
|
|
accum += tensor(1, i, 2, 3);
|
|
VERIFY_IS_EQUAL(result(1, i, 2, 3), accum);
|
|
}
|
|
result = tensor.cumsum(2);
|
|
accum = 0;
|
|
for (int i = 0; i < size; i++) {
|
|
accum += tensor(1, 2, i, 3);
|
|
VERIFY_IS_EQUAL(result(1, 2, i, 3), accum);
|
|
}
|
|
result = tensor.cumsum(3);
|
|
accum = 0;
|
|
for (int i = 0; i < size; i++) {
|
|
accum += tensor(1, 2, 3, i);
|
|
VERIFY_IS_EQUAL(result(1, 2, 3, i), accum);
|
|
}
|
|
}
|
|
|
|
template <int DataLayout>
|
|
static void test_tensor_maps() {
|
|
int inputs[20];
|
|
TensorMap<Tensor<int, 1, DataLayout> > tensor_map(inputs, 20);
|
|
tensor_map.setRandom();
|
|
|
|
Tensor<int, 1, DataLayout> result = tensor_map.cumsum(0);
|
|
|
|
int accum = 0;
|
|
for (int i = 0; i < 20; ++i) {
|
|
accum += tensor_map(i);
|
|
VERIFY_IS_EQUAL(result(i), accum);
|
|
}
|
|
}
|
|
|
|
EIGEN_DECLARE_TEST(cxx11_tensor_scan) {
|
|
CALL_SUBTEST((test_1d_scan<ColMajor, float, true>()));
|
|
CALL_SUBTEST((test_1d_scan<ColMajor, float, false>()));
|
|
CALL_SUBTEST((test_1d_scan<RowMajor, float, true>()));
|
|
CALL_SUBTEST((test_1d_scan<RowMajor, float, false>()));
|
|
CALL_SUBTEST(test_4d_scan<ColMajor>());
|
|
CALL_SUBTEST(test_4d_scan<RowMajor>());
|
|
CALL_SUBTEST(test_tensor_maps<ColMajor>());
|
|
CALL_SUBTEST(test_tensor_maps<RowMajor>());
|
|
}
|