mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-21 07:19:46 +08:00
490 lines
18 KiB
C++
490 lines
18 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
// clang-format off
|
|
#include "main.h"
|
|
#include <Eigen/CXX11/Tensor>
|
|
// clang-format on
|
|
|
|
using Eigen::internal::TensorBlockDescriptor;
|
|
using Eigen::internal::TensorExecutor;
|
|
|
|
// -------------------------------------------------------------------------- //
|
|
// Utility functions to generate random tensors, blocks, and evaluate them.
|
|
|
|
template <int NumDims>
|
|
static DSizes<Index, NumDims> RandomDims(Index min, Index max) {
|
|
DSizes<Index, NumDims> dims;
|
|
for (int i = 0; i < NumDims; ++i) {
|
|
dims[i] = internal::random<Index>(min, max);
|
|
}
|
|
return DSizes<Index, NumDims>(dims);
|
|
}
|
|
|
|
// Block offsets and extents allows to construct a TensorSlicingOp corresponding
|
|
// to a TensorBlockDescriptor.
|
|
template <int NumDims>
|
|
struct TensorBlockParams {
|
|
DSizes<Index, NumDims> offsets;
|
|
DSizes<Index, NumDims> sizes;
|
|
TensorBlockDescriptor<NumDims, Index> desc;
|
|
};
|
|
|
|
template <int Layout, int NumDims>
|
|
static TensorBlockParams<NumDims> RandomBlock(DSizes<Index, NumDims> dims,
|
|
Index min, Index max) {
|
|
// Choose random offsets and sizes along all tensor dimensions.
|
|
DSizes<Index, NumDims> offsets(RandomDims<NumDims>(min, max));
|
|
DSizes<Index, NumDims> sizes(RandomDims<NumDims>(min, max));
|
|
|
|
// Make sure that offset + size do not overflow dims.
|
|
for (int i = 0; i < NumDims; ++i) {
|
|
offsets[i] = numext::mini(dims[i] - 1, offsets[i]);
|
|
sizes[i] = numext::mini(sizes[i], dims[i] - offsets[i]);
|
|
}
|
|
|
|
Index offset = 0;
|
|
DSizes<Index, NumDims> strides = Eigen::internal::strides<Layout>(dims);
|
|
for (int i = 0; i < NumDims; ++i) {
|
|
offset += strides[i] * offsets[i];
|
|
}
|
|
|
|
return {offsets, sizes, TensorBlockDescriptor<NumDims, Index>(offset, sizes)};
|
|
}
|
|
|
|
// Generate block with block sizes skewed towards inner dimensions. This type of
|
|
// block is required for evaluating broadcast expressions.
|
|
template <int Layout, int NumDims>
|
|
static TensorBlockParams<NumDims> SkewedInnerBlock(
|
|
DSizes<Index, NumDims> dims) {
|
|
using BlockMapper = internal::TensorBlockMapper<int, Index, NumDims, Layout>;
|
|
BlockMapper block_mapper(dims,
|
|
internal::TensorBlockShapeType::kSkewedInnerDims,
|
|
internal::random<Index>(1, dims.TotalSize()));
|
|
|
|
Index total_blocks = block_mapper.total_block_count();
|
|
Index block_index = internal::random<Index>(0, total_blocks - 1);
|
|
auto block = block_mapper.GetBlockForIndex(block_index, nullptr);
|
|
DSizes<Index, NumDims> sizes = block.block_sizes();
|
|
|
|
auto strides = internal::strides<Layout>(dims);
|
|
DSizes<Index, NumDims> offsets;
|
|
|
|
// Compute offsets for the first block coefficient.
|
|
Index index = block.first_coeff_index();
|
|
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
|
|
for (int i = NumDims - 1; i > 0; --i) {
|
|
const Index idx = index / strides[i];
|
|
index -= idx * strides[i];
|
|
offsets[i] = idx;
|
|
}
|
|
offsets[0] = index;
|
|
} else {
|
|
for (int i = 0; i < NumDims - 1; ++i) {
|
|
const Index idx = index / strides[i];
|
|
index -= idx * strides[i];
|
|
offsets[i] = idx;
|
|
}
|
|
offsets[NumDims - 1] = index;
|
|
}
|
|
|
|
auto desc = TensorBlockDescriptor<NumDims>(block.first_coeff_index(), sizes);
|
|
return {offsets, sizes, desc};
|
|
}
|
|
|
|
template <int NumDims>
|
|
static TensorBlockParams<NumDims> FixedSizeBlock(DSizes<Index, NumDims> dims) {
|
|
DSizes<Index, NumDims> offsets;
|
|
for (int i = 0; i < NumDims; ++i) offsets[i] = 0;
|
|
|
|
return {offsets, dims, TensorBlockDescriptor<NumDims, Index>(0, dims)};
|
|
}
|
|
|
|
inline Eigen::IndexList<int, Eigen::type2index<1>> NByOne(int n) {
|
|
Eigen::IndexList<int, Eigen::type2index<1>> ret;
|
|
ret.set(0, n);
|
|
return ret;
|
|
}
|
|
inline Eigen::IndexList<Eigen::type2index<1>, int> OneByM(int m) {
|
|
Eigen::IndexList<Eigen::type2index<1>, int> ret;
|
|
ret.set(1, m);
|
|
return ret;
|
|
}
|
|
|
|
// -------------------------------------------------------------------------- //
|
|
// Verify that block expression evaluation produces the same result as a
|
|
// TensorSliceOp (reading a tensor block is same to taking a tensor slice).
|
|
|
|
template <typename T, int NumDims, int Layout, typename Expression,
|
|
typename GenBlockParams>
|
|
static void VerifyBlockEvaluator(Expression expr, GenBlockParams gen_block) {
|
|
using Device = DefaultDevice;
|
|
auto d = Device();
|
|
|
|
// Scratch memory allocator for block evaluation.
|
|
typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch;
|
|
TensorBlockScratch scratch(d);
|
|
|
|
// TensorEvaluator is needed to produce tensor blocks of the expression.
|
|
auto eval = TensorEvaluator<const decltype(expr), Device>(expr, d);
|
|
|
|
// Choose a random offsets, sizes and TensorBlockDescriptor.
|
|
TensorBlockParams<NumDims> block_params = gen_block();
|
|
|
|
// Evaluate TensorBlock expression into a tensor.
|
|
Tensor<T, NumDims, Layout> block(block_params.desc.dimensions());
|
|
|
|
// Maybe use this tensor as a block desc destination.
|
|
Tensor<T, NumDims, Layout> dst(block_params.desc.dimensions());
|
|
if (internal::random<bool>()) {
|
|
block_params.desc.template AddDestinationBuffer(
|
|
dst.data(), internal::strides<Layout>(dst.dimensions()),
|
|
dst.dimensions().TotalSize() * sizeof(T));
|
|
}
|
|
|
|
auto tensor_block = eval.blockV2(block_params.desc, scratch);
|
|
auto b_expr = tensor_block.expr();
|
|
|
|
// We explicitly disable vectorization and tiling, to run a simple coefficient
|
|
// wise assignment loop, because it's very simple and should be correct.
|
|
using BlockAssign = TensorAssignOp<decltype(block), const decltype(b_expr)>;
|
|
using BlockExecutor = TensorExecutor<const BlockAssign, Device, false,
|
|
internal::TiledEvaluation::Off>;
|
|
BlockExecutor::run(BlockAssign(block, b_expr), d);
|
|
|
|
// Cleanup temporary buffers owned by a tensor block.
|
|
tensor_block.cleanup();
|
|
|
|
// Compute a Tensor slice corresponding to a Tensor block.
|
|
Tensor<T, NumDims, Layout> slice(block_params.desc.dimensions());
|
|
auto s_expr = expr.slice(block_params.offsets, block_params.sizes);
|
|
|
|
// Explicitly use coefficient assignment to evaluate slice expression.
|
|
using SliceAssign = TensorAssignOp<decltype(slice), const decltype(s_expr)>;
|
|
using SliceExecutor = TensorExecutor<const SliceAssign, Device, false,
|
|
internal::TiledEvaluation::Off>;
|
|
SliceExecutor::run(SliceAssign(slice, s_expr), d);
|
|
|
|
// Tensor block and tensor slice must be the same.
|
|
for (Index i = 0; i < block.dimensions().TotalSize(); ++i) {
|
|
VERIFY_IS_EQUAL(block.coeff(i), slice.coeff(i));
|
|
}
|
|
}
|
|
|
|
// -------------------------------------------------------------------------- //
|
|
|
|
template <typename T, int NumDims, int Layout>
|
|
static void test_eval_tensor_block() {
|
|
DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20);
|
|
Tensor<T, NumDims, Layout> input(dims);
|
|
input.setRandom();
|
|
|
|
// Identity tensor expression transformation.
|
|
VerifyBlockEvaluator<T, NumDims, Layout>(
|
|
input, [&dims]() { return RandomBlock<Layout>(dims, 1, 10); });
|
|
}
|
|
|
|
template <typename T, int NumDims, int Layout>
|
|
static void test_eval_tensor_unary_expr_block() {
|
|
DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20);
|
|
Tensor<T, NumDims, Layout> input(dims);
|
|
input.setRandom();
|
|
|
|
VerifyBlockEvaluator<T, NumDims, Layout>(
|
|
input.square(), [&dims]() { return RandomBlock<Layout>(dims, 1, 10); });
|
|
}
|
|
|
|
template <typename T, int NumDims, int Layout>
|
|
static void test_eval_tensor_binary_expr_block() {
|
|
DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20);
|
|
Tensor<T, NumDims, Layout> lhs(dims), rhs(dims);
|
|
lhs.setRandom();
|
|
rhs.setRandom();
|
|
|
|
VerifyBlockEvaluator<T, NumDims, Layout>(
|
|
lhs + rhs, [&dims]() { return RandomBlock<Layout>(dims, 1, 10); });
|
|
}
|
|
|
|
template <typename T, int NumDims, int Layout>
|
|
static void test_eval_tensor_binary_with_unary_expr_block() {
|
|
DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20);
|
|
Tensor<T, NumDims, Layout> lhs(dims), rhs(dims);
|
|
lhs.setRandom();
|
|
rhs.setRandom();
|
|
|
|
VerifyBlockEvaluator<T, NumDims, Layout>(
|
|
(lhs.square() + rhs.square()).sqrt(),
|
|
[&dims]() { return RandomBlock<Layout>(dims, 1, 10); });
|
|
}
|
|
|
|
template <typename T, int NumDims, int Layout>
|
|
static void test_eval_tensor_broadcast() {
|
|
DSizes<Index, NumDims> dims = RandomDims<NumDims>(1, 10);
|
|
Tensor<T, NumDims, Layout> input(dims);
|
|
input.setRandom();
|
|
|
|
DSizes<Index, NumDims> bcast = RandomDims<NumDims>(1, 5);
|
|
|
|
DSizes<Index, NumDims> bcasted_dims;
|
|
for (int i = 0; i < NumDims; ++i) bcasted_dims[i] = dims[i] * bcast[i];
|
|
|
|
VerifyBlockEvaluator<T, NumDims, Layout>(
|
|
input.broadcast(bcast),
|
|
[&bcasted_dims]() { return SkewedInnerBlock<Layout>(bcasted_dims); });
|
|
|
|
VerifyBlockEvaluator<T, NumDims, Layout>(
|
|
input.broadcast(bcast),
|
|
[&bcasted_dims]() { return FixedSizeBlock(bcasted_dims); });
|
|
|
|
// Check that desc.destination() memory is not shared between two broadcast
|
|
// materializations.
|
|
VerifyBlockEvaluator<T, NumDims, Layout>(
|
|
input.broadcast(bcast) + input.square().broadcast(bcast),
|
|
[&bcasted_dims]() { return SkewedInnerBlock<Layout>(bcasted_dims); });
|
|
}
|
|
|
|
template <typename T, int NumDims, int Layout>
|
|
static void test_eval_tensor_reshape() {
|
|
DSizes<Index, NumDims> dims = RandomDims<NumDims>(1, 10);
|
|
|
|
DSizes<Index, NumDims> shuffled = dims;
|
|
std::shuffle(&shuffled[0], &shuffled[NumDims - 1], std::mt19937(g_seed));
|
|
|
|
Tensor<T, NumDims, Layout> input(dims);
|
|
input.setRandom();
|
|
|
|
VerifyBlockEvaluator<T, NumDims, Layout>(
|
|
input.reshape(shuffled),
|
|
[&shuffled]() { return RandomBlock<Layout>(shuffled, 1, 10); });
|
|
|
|
VerifyBlockEvaluator<T, NumDims, Layout>(
|
|
input.reshape(shuffled),
|
|
[&shuffled]() { return SkewedInnerBlock<Layout>(shuffled); });
|
|
}
|
|
|
|
template <typename T, int Layout>
|
|
static void test_eval_tensor_reshape_with_bcast() {
|
|
Index dim = internal::random<Index>(1, 100);
|
|
|
|
Tensor<T, 2, Layout> lhs(1, dim);
|
|
Tensor<T, 2, Layout> rhs(dim, 1);
|
|
lhs.setRandom();
|
|
rhs.setRandom();
|
|
|
|
auto reshapeLhs = NByOne(dim);
|
|
auto reshapeRhs = OneByM(dim);
|
|
|
|
auto bcastLhs = OneByM(dim);
|
|
auto bcastRhs = NByOne(dim);
|
|
|
|
DSizes<Index, 2> dims(dim, dim);
|
|
|
|
VerifyBlockEvaluator<T, 2, Layout>(
|
|
lhs.reshape(reshapeLhs).broadcast(bcastLhs) +
|
|
rhs.reshape(reshapeRhs).broadcast(bcastRhs),
|
|
[dims]() { return SkewedInnerBlock<Layout, 2>(dims); });
|
|
}
|
|
|
|
template <typename T, int NumDims, int Layout>
|
|
static void test_eval_tensor_cast() {
|
|
DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20);
|
|
Tensor<T, NumDims, Layout> input(dims);
|
|
input.setRandom();
|
|
|
|
VerifyBlockEvaluator<T, NumDims, Layout>(
|
|
input.template cast<int>().template cast<T>(),
|
|
[&dims]() { return RandomBlock<Layout>(dims, 1, 10); });
|
|
}
|
|
|
|
template <typename T, int NumDims, int Layout>
|
|
static void test_eval_tensor_select() {
|
|
DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20);
|
|
Tensor<T, NumDims, Layout> lhs(dims);
|
|
Tensor<T, NumDims, Layout> rhs(dims);
|
|
Tensor<bool, NumDims, Layout> cond(dims);
|
|
lhs.setRandom();
|
|
rhs.setRandom();
|
|
cond.setRandom();
|
|
|
|
VerifyBlockEvaluator<T, NumDims, Layout>(cond.select(lhs, rhs), [&dims]() {
|
|
return RandomBlock<Layout>(dims, 1, 20);
|
|
});
|
|
}
|
|
|
|
template <typename T, int NumDims, int Layout>
|
|
static void test_eval_tensor_padding() {
|
|
const int inner_dim = Layout == static_cast<int>(ColMajor) ? 0 : NumDims - 1;
|
|
|
|
DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20);
|
|
Tensor<T, NumDims, Layout> input(dims);
|
|
input.setRandom();
|
|
|
|
DSizes<Index, NumDims> pad_before = RandomDims<NumDims>(0, 4);
|
|
DSizes<Index, NumDims> pad_after = RandomDims<NumDims>(0, 4);
|
|
array<std::pair<Index, Index>, NumDims> paddings;
|
|
for (int i = 0; i < NumDims; ++i) {
|
|
paddings[i] = std::make_pair(pad_before[i], pad_after[i]);
|
|
}
|
|
|
|
// Test squeezing reads from inner dim.
|
|
if (internal::random<bool>()) {
|
|
pad_before[inner_dim] = 0;
|
|
pad_after[inner_dim] = 0;
|
|
paddings[inner_dim] = std::make_pair(0, 0);
|
|
}
|
|
|
|
DSizes<Index, NumDims> padded_dims;
|
|
for (int i = 0; i < NumDims; ++i) {
|
|
padded_dims[i] = dims[i] + pad_before[i] + pad_after[i];
|
|
}
|
|
|
|
VerifyBlockEvaluator<T, NumDims, Layout>(
|
|
input.pad(paddings),
|
|
[&padded_dims]() { return FixedSizeBlock(padded_dims); });
|
|
|
|
VerifyBlockEvaluator<T, NumDims, Layout>(
|
|
input.pad(paddings),
|
|
[&padded_dims]() { return RandomBlock<Layout>(padded_dims, 1, 10); });
|
|
|
|
VerifyBlockEvaluator<T, NumDims, Layout>(
|
|
input.pad(paddings),
|
|
[&padded_dims]() { return SkewedInnerBlock<Layout>(padded_dims); });
|
|
}
|
|
|
|
// -------------------------------------------------------------------------- //
|
|
// Verify that assigning block to a Tensor expression produces the same result
|
|
// as an assignment to TensorSliceOp (writing a block is is identical to
|
|
// assigning one tensor to a slice of another tensor).
|
|
|
|
template <typename T, int NumDims, int Layout, typename Expression,
|
|
typename GenBlockParams>
|
|
static void VerifyBlockAssignment(Tensor<T, NumDims, Layout>& tensor,
|
|
Expression expr, GenBlockParams gen_block) {
|
|
using Device = DefaultDevice;
|
|
auto d = Device();
|
|
|
|
// We use tensor evaluator as a target for block and slice assignments.
|
|
auto eval = TensorEvaluator<decltype(expr), Device>(expr, d);
|
|
|
|
// Generate a random block, or choose a block that fits in full expression.
|
|
TensorBlockParams<NumDims> block_params = gen_block();
|
|
|
|
// Generate random data of the selected block size.
|
|
Tensor<T, NumDims, Layout> block(block_params.desc.dimensions());
|
|
block.setRandom();
|
|
|
|
// ************************************************************************ //
|
|
// (1) Assignment from a block.
|
|
|
|
// Construct a materialize block from a random generated block tensor.
|
|
internal::TensorMaterializedBlock<T, NumDims, Layout> blk(
|
|
internal::TensorBlockKind::kView, block.data(), block.dimensions());
|
|
|
|
// Reset all underlying tensor values to zero.
|
|
tensor.setZero();
|
|
|
|
// Use evaluator to write block into a tensor.
|
|
eval.writeBlockV2(block_params.desc, blk);
|
|
|
|
// Make a copy of the result after assignment.
|
|
Tensor<T, NumDims, Layout> block_assigned = tensor;
|
|
|
|
// ************************************************************************ //
|
|
// (2) Assignment to a slice
|
|
|
|
// Reset all underlying tensor values to zero.
|
|
tensor.setZero();
|
|
|
|
// Assign block to a slice of original expression
|
|
auto s_expr = expr.slice(block_params.offsets, block_params.sizes);
|
|
|
|
// Explicitly use coefficient assignment to evaluate slice expression.
|
|
using SliceAssign = TensorAssignOp<decltype(s_expr), const decltype(block)>;
|
|
using SliceExecutor = TensorExecutor<const SliceAssign, Device, false,
|
|
internal::TiledEvaluation::Off>;
|
|
SliceExecutor::run(SliceAssign(s_expr, block), d);
|
|
|
|
// Make a copy of the result after assignment.
|
|
Tensor<T, NumDims, Layout> slice_assigned = tensor;
|
|
|
|
for (Index i = 0; i < tensor.dimensions().TotalSize(); ++i) {
|
|
VERIFY_IS_EQUAL(block_assigned.coeff(i), slice_assigned.coeff(i));
|
|
}
|
|
}
|
|
|
|
// -------------------------------------------------------------------------- //
|
|
|
|
template <typename T, int NumDims, int Layout>
|
|
static void test_assign_to_tensor() {
|
|
DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20);
|
|
Tensor<T, NumDims, Layout> tensor(dims);
|
|
|
|
TensorMap<Tensor<T, NumDims, Layout>> map(tensor.data(), dims);
|
|
|
|
VerifyBlockAssignment<T, NumDims, Layout>(
|
|
tensor, map, [&dims]() { return RandomBlock<Layout>(dims, 10, 20); });
|
|
VerifyBlockAssignment<T, NumDims, Layout>(
|
|
tensor, map, [&dims]() { return FixedSizeBlock(dims); });
|
|
}
|
|
|
|
template <typename T, int NumDims, int Layout>
|
|
static void test_assign_to_tensor_reshape() {
|
|
DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20);
|
|
Tensor<T, NumDims, Layout> tensor(dims);
|
|
|
|
TensorMap<Tensor<T, NumDims, Layout>> map(tensor.data(), dims);
|
|
|
|
DSizes<Index, NumDims> shuffled = dims;
|
|
std::shuffle(&shuffled[0], &shuffled[NumDims - 1], std::mt19937(g_seed));
|
|
|
|
VerifyBlockAssignment<T, NumDims, Layout>(
|
|
tensor, map.reshape(shuffled),
|
|
[&shuffled]() { return RandomBlock<Layout>(shuffled, 1, 10); });
|
|
|
|
VerifyBlockAssignment<T, NumDims, Layout>(
|
|
tensor, map.reshape(shuffled),
|
|
[&shuffled]() { return SkewedInnerBlock<Layout>(shuffled); });
|
|
|
|
VerifyBlockAssignment<T, NumDims, Layout>(
|
|
tensor, map.reshape(shuffled),
|
|
[&shuffled]() { return FixedSizeBlock(shuffled); });
|
|
}
|
|
|
|
// -------------------------------------------------------------------------- //
|
|
|
|
#define CALL_SUBTESTS_DIMS_LAYOUTS(NAME) \
|
|
CALL_SUBTEST((NAME<float, 1, RowMajor>())); \
|
|
CALL_SUBTEST((NAME<float, 2, RowMajor>())); \
|
|
CALL_SUBTEST((NAME<float, 4, RowMajor>())); \
|
|
CALL_SUBTEST((NAME<float, 5, RowMajor>())); \
|
|
CALL_SUBTEST((NAME<float, 1, ColMajor>())); \
|
|
CALL_SUBTEST((NAME<float, 2, ColMajor>())); \
|
|
CALL_SUBTEST((NAME<float, 4, ColMajor>())); \
|
|
CALL_SUBTEST((NAME<float, 5, ColMajor>()))
|
|
|
|
#define CALL_SUBTESTS_LAYOUTS(NAME) \
|
|
CALL_SUBTEST((NAME<float, RowMajor>())); \
|
|
CALL_SUBTEST((NAME<float, ColMajor>()))
|
|
|
|
EIGEN_DECLARE_TEST(cxx11_tensor_block_eval) {
|
|
// clang-format off
|
|
CALL_SUBTESTS_DIMS_LAYOUTS(test_eval_tensor_block);
|
|
CALL_SUBTESTS_DIMS_LAYOUTS(test_eval_tensor_unary_expr_block);
|
|
CALL_SUBTESTS_DIMS_LAYOUTS(test_eval_tensor_binary_expr_block);
|
|
CALL_SUBTESTS_DIMS_LAYOUTS(test_eval_tensor_binary_with_unary_expr_block);
|
|
CALL_SUBTESTS_DIMS_LAYOUTS(test_eval_tensor_broadcast);
|
|
CALL_SUBTESTS_DIMS_LAYOUTS(test_eval_tensor_reshape);
|
|
CALL_SUBTESTS_DIMS_LAYOUTS(test_eval_tensor_cast);
|
|
CALL_SUBTESTS_DIMS_LAYOUTS(test_eval_tensor_padding);
|
|
|
|
CALL_SUBTESTS_LAYOUTS(test_eval_tensor_reshape_with_bcast);
|
|
|
|
CALL_SUBTESTS_DIMS_LAYOUTS(test_assign_to_tensor);
|
|
CALL_SUBTESTS_DIMS_LAYOUTS(test_assign_to_tensor_reshape);
|
|
// clang-format on
|
|
}
|