mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-27 07:29:52 +08:00
186 lines
6.9 KiB
C++
186 lines
6.9 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
// The computeRoots function included in this is based on materials
|
|
// covered by the following copyright and license:
|
|
//
|
|
// Geometric Tools, LLC
|
|
// Copyright (c) 1998-2010
|
|
// Distributed under the Boost Software License, Version 1.0.
|
|
//
|
|
// Permission is hereby granted, free of charge, to any person or organization
|
|
// obtaining a copy of the software and accompanying documentation covered by
|
|
// this license (the "Software") to use, reproduce, display, distribute,
|
|
// execute, and transmit the Software, and to prepare derivative works of the
|
|
// Software, and to permit third-parties to whom the Software is furnished to
|
|
// do so, all subject to the following:
|
|
//
|
|
// The copyright notices in the Software and this entire statement, including
|
|
// the above license grant, this restriction and the following disclaimer,
|
|
// must be included in all copies of the Software, in whole or in part, and
|
|
// all derivative works of the Software, unless such copies or derivative
|
|
// works are solely in the form of machine-executable object code generated by
|
|
// a source language processor.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
// FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
|
|
// SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
|
|
// FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
|
|
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
// DEALINGS IN THE SOFTWARE.
|
|
|
|
#include <iostream>
|
|
#include <Eigen/Core>
|
|
#include <Eigen/Eigenvalues>
|
|
#include <Eigen/Geometry>
|
|
#include <bench/BenchTimer.h>
|
|
|
|
using namespace Eigen;
|
|
using namespace std;
|
|
|
|
template<typename Matrix, typename Roots>
|
|
inline void computeRoots(const Matrix& m, Roots& roots)
|
|
{
|
|
typedef typename Matrix::Scalar Scalar;
|
|
const Scalar s_inv3 = 1.0/3.0;
|
|
const Scalar s_sqrt3 = internal::sqrt(Scalar(3.0));
|
|
|
|
// The characteristic equation is x^3 - c2*x^2 + c1*x - c0 = 0. The
|
|
// eigenvalues are the roots to this equation, all guaranteed to be
|
|
// real-valued, because the matrix is symmetric.
|
|
Scalar c0 = m(0,0)*m(1,1)*m(2,2) + Scalar(2)*m(0,1)*m(0,2)*m(1,2) - m(0,0)*m(1,2)*m(1,2) - m(1,1)*m(0,2)*m(0,2) - m(2,2)*m(0,1)*m(0,1);
|
|
Scalar c1 = m(0,0)*m(1,1) - m(0,1)*m(0,1) + m(0,0)*m(2,2) - m(0,2)*m(0,2) + m(1,1)*m(2,2) - m(1,2)*m(1,2);
|
|
Scalar c2 = m(0,0) + m(1,1) + m(2,2);
|
|
|
|
// Construct the parameters used in classifying the roots of the equation
|
|
// and in solving the equation for the roots in closed form.
|
|
Scalar c2_over_3 = c2*s_inv3;
|
|
Scalar a_over_3 = (c1 - c2*c2_over_3)*s_inv3;
|
|
if (a_over_3 > Scalar(0))
|
|
a_over_3 = Scalar(0);
|
|
|
|
Scalar half_b = Scalar(0.5)*(c0 + c2_over_3*(Scalar(2)*c2_over_3*c2_over_3 - c1));
|
|
|
|
Scalar q = half_b*half_b + a_over_3*a_over_3*a_over_3;
|
|
if (q > Scalar(0))
|
|
q = Scalar(0);
|
|
|
|
// Compute the eigenvalues by solving for the roots of the polynomial.
|
|
Scalar rho = internal::sqrt(-a_over_3);
|
|
Scalar theta = std::atan2(internal::sqrt(-q),half_b)*s_inv3;
|
|
Scalar cos_theta = internal::cos(theta);
|
|
Scalar sin_theta = internal::sin(theta);
|
|
roots(0) = c2_over_3 + Scalar(2)*rho*cos_theta;
|
|
roots(1) = c2_over_3 - rho*(cos_theta + s_sqrt3*sin_theta);
|
|
roots(2) = c2_over_3 - rho*(cos_theta - s_sqrt3*sin_theta);
|
|
|
|
// Sort in increasing order.
|
|
if (roots(0) >= roots(1))
|
|
std::swap(roots(0),roots(1));
|
|
if (roots(1) >= roots(2))
|
|
{
|
|
std::swap(roots(1),roots(2));
|
|
if (roots(0) >= roots(1))
|
|
std::swap(roots(0),roots(1));
|
|
}
|
|
}
|
|
|
|
template<typename Matrix, typename Vector>
|
|
void eigen33(const Matrix& mat, Matrix& evecs, Vector& evals)
|
|
{
|
|
typedef typename Matrix::Scalar Scalar;
|
|
// Scale the matrix so its entries are in [-1,1]. The scaling is applied
|
|
// only when at least one matrix entry has magnitude larger than 1.
|
|
|
|
Scalar scale = mat.cwiseAbs()/*.template triangularView<Lower>()*/.maxCoeff();
|
|
scale = std::max(scale,Scalar(1));
|
|
Matrix scaledMat = mat / scale;
|
|
|
|
// Compute the eigenvalues
|
|
// scaledMat.setZero();
|
|
computeRoots(scaledMat,evals);
|
|
|
|
// compute the eigen vectors
|
|
// **here we assume 3 differents eigenvalues**
|
|
|
|
// "optimized version" which appears to be slower with gcc!
|
|
// Vector base;
|
|
// Scalar alpha, beta;
|
|
// base << scaledMat(1,0) * scaledMat(2,1),
|
|
// scaledMat(1,0) * scaledMat(2,0),
|
|
// -scaledMat(1,0) * scaledMat(1,0);
|
|
// for(int k=0; k<2; ++k)
|
|
// {
|
|
// alpha = scaledMat(0,0) - evals(k);
|
|
// beta = scaledMat(1,1) - evals(k);
|
|
// evecs.col(k) = (base + Vector(-beta*scaledMat(2,0), -alpha*scaledMat(2,1), alpha*beta)).normalized();
|
|
// }
|
|
// evecs.col(2) = evecs.col(0).cross(evecs.col(1)).normalized();
|
|
|
|
// naive version
|
|
Matrix tmp;
|
|
tmp = scaledMat;
|
|
tmp.diagonal().array() -= evals(0);
|
|
evecs.col(0) = tmp.row(0).cross(tmp.row(1)).normalized();
|
|
|
|
tmp = scaledMat;
|
|
tmp.diagonal().array() -= evals(1);
|
|
evecs.col(1) = tmp.row(0).cross(tmp.row(1)).normalized();
|
|
|
|
tmp = scaledMat;
|
|
tmp.diagonal().array() -= evals(2);
|
|
evecs.col(2) = tmp.row(0).cross(tmp.row(1)).normalized();
|
|
|
|
// Rescale back to the original size.
|
|
evals *= scale;
|
|
}
|
|
|
|
int main()
|
|
{
|
|
BenchTimer t;
|
|
int tries = 10;
|
|
int rep = 400000;
|
|
typedef Matrix3f Mat;
|
|
typedef Vector3f Vec;
|
|
Mat A = Mat::Random(3,3);
|
|
A = A.adjoint() * A;
|
|
|
|
SelfAdjointEigenSolver<Mat> eig(A);
|
|
BENCH(t, tries, rep, eig.compute(A));
|
|
std::cout << "Eigen: " << t.best() << "s\n";
|
|
|
|
Mat evecs;
|
|
Vec evals;
|
|
BENCH(t, tries, rep, eigen33(A,evecs,evals));
|
|
std::cout << "Direct: " << t.best() << "s\n\n";
|
|
|
|
std::cerr << "Eigenvalue/eigenvector diffs:\n";
|
|
std::cerr << (evals - eig.eigenvalues()).transpose() << "\n";
|
|
for(int k=0;k<3;++k)
|
|
if(evecs.col(k).dot(eig.eigenvectors().col(k))<0)
|
|
evecs.col(k) = -evecs.col(k);
|
|
std::cerr << evecs - eig.eigenvectors() << "\n\n";
|
|
}
|