eigen/bench/eig33.cpp

140 lines
4.4 KiB
C++

#include <iostream>
#include <Eigen/Core>
#include <Eigen/Eigenvalues>
#include <Eigen/Geometry>
#include <bench/BenchTimer.h>
using namespace Eigen;
using namespace std;
template<typename Matrix, typename Roots>
inline void computeRoots (const Matrix& rkA, Roots& adRoot)
{
typedef typename Matrix::Scalar Scalar;
const Scalar msInv3 = 1.0/3.0;
const Scalar msRoot3 = ei_sqrt(Scalar(3.0));
Scalar dA00 = rkA(0,0);
Scalar dA01 = rkA(0,1);
Scalar dA02 = rkA(0,2);
Scalar dA11 = rkA(1,1);
Scalar dA12 = rkA(1,2);
Scalar dA22 = rkA(2,2);
// The characteristic equation is x^3 - c2*x^2 + c1*x - c0 = 0. The
// eigenvalues are the roots to this equation, all guaranteed to be
// real-valued, because the matrix is symmetric.
Scalar dC0 = dA00*dA11*dA22 + Scalar(2)*dA01*dA02*dA12 - dA00*dA12*dA12 - dA11*dA02*dA02 - dA22*dA01*dA01;
Scalar dC1 = dA00*dA11 - dA01*dA01 + dA00*dA22 - dA02*dA02 + dA11*dA22 - dA12*dA12;
Scalar dC2 = dA00 + dA11 + dA22;
// Construct the parameters used in classifying the roots of the equation
// and in solving the equation for the roots in closed form.
Scalar dC2Div3 = dC2*msInv3;
Scalar dADiv3 = (dC1 - dC2*dC2Div3)*msInv3;
if (dADiv3 > Scalar(0))
dADiv3 = Scalar(0);
Scalar dMBDiv2 = Scalar(0.5)*(dC0 + dC2Div3*(Scalar(2)*dC2Div3*dC2Div3 - dC1));
Scalar dQ = dMBDiv2*dMBDiv2 + dADiv3*dADiv3*dADiv3;
if (dQ > Scalar(0))
dQ = Scalar(0);
// Compute the eigenvalues by solving for the roots of the polynomial.
Scalar dMagnitude = ei_sqrt(-dADiv3);
Scalar dAngle = std::atan2(ei_sqrt(-dQ),dMBDiv2)*msInv3;
Scalar dCos = ei_cos(dAngle);
Scalar dSin = ei_sin(dAngle);
adRoot(0) = dC2Div3 + 2.f*dMagnitude*dCos;
adRoot(1) = dC2Div3 - dMagnitude*(dCos + msRoot3*dSin);
adRoot(2) = dC2Div3 - dMagnitude*(dCos - msRoot3*dSin);
// Sort in increasing order.
if (adRoot(0) >= adRoot(1))
std::swap(adRoot(0),adRoot(1));
if (adRoot(1) >= adRoot(2))
{
std::swap(adRoot(1),adRoot(2));
if (adRoot(0) >= adRoot(1))
std::swap(adRoot(0),adRoot(1));
}
}
template<typename Matrix, typename Vector>
void eigen33(const Matrix& mat, Matrix& evecs, Vector& evals)
{
typedef typename Matrix::Scalar Scalar;
// Scale the matrix so its entries are in [-1,1]. The scaling is applied
// only when at least one matrix entry has magnitude larger than 1.
Scalar scale = mat.cwiseAbs()/*.template triangularView<Lower>()*/.maxCoeff();
scale = std::max(scale,Scalar(1));
Matrix scaledMat = mat / scale;
// Compute the eigenvalues
// scaledMat.setZero();
computeRoots(scaledMat,evals);
// compute the eigen vectors
// here we assume 3 differents eigenvalues
// "optimized version" which appears to be slower with gcc!
// Vector base;
// Scalar alpha, beta;
// base << scaledMat(1,0) * scaledMat(2,1),
// scaledMat(1,0) * scaledMat(2,0),
// -scaledMat(1,0) * scaledMat(1,0);
// for(int k=0; k<2; ++k)
// {
// alpha = scaledMat(0,0) - evals(k);
// beta = scaledMat(1,1) - evals(k);
// evecs.col(k) = (base + Vector(-beta*scaledMat(2,0), -alpha*scaledMat(2,1), alpha*beta)).normalized();
// }
// evecs.col(2) = evecs.col(0).cross(evecs.col(1)).normalized();
// naive version
Matrix tmp;
tmp = scaledMat;
tmp.diagonal().array() -= evals(0);
evecs.col(0) = tmp.row(0).cross(tmp.row(1)).normalized();
tmp = scaledMat;
tmp.diagonal().array() -= evals(1);
evecs.col(1) = tmp.row(0).cross(tmp.row(1)).normalized();
tmp = scaledMat;
tmp.diagonal().array() -= evals(2);
evecs.col(2) = tmp.row(0).cross(tmp.row(1)).normalized();
// Rescale back to the original size.
evals *= scale;
}
int main()
{
BenchTimer t;
int tries = 10;
int rep = 400000;
typedef Matrix3f Mat;
typedef Vector3f Vec;
Mat A = Mat::Random(3,3);
A = A.adjoint() * A;
SelfAdjointEigenSolver<Mat> eig(A);
BENCH(t, tries, rep, eig.compute(A));
std::cout << "Eigen: " << t.best() << "s\n";
Mat evecs;
Vec evals;
BENCH(t, tries, rep, eigen33(A,evecs,evals));
std::cout << "Direct: " << t.best() << "s\n\n";
std::cerr << "Eigenvalue/eigenvector diffs:\n";
std::cerr << (evals - eig.eigenvalues()).transpose() << "\n";
for(int k=0;k<3;++k)
if(evecs.col(k).dot(eig.eigenvectors().col(k))<0)
evecs.col(k) = -evecs.col(k);
std::cerr << evecs - eig.eigenvectors() << "\n\n";
}