mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-12 14:25:16 +08:00
a76fbbf397
- remove most of the metaprogramming kung fu in MathFunctions.h (only keep functions that differs from the std) - remove the overloads for array expression that were in the std namespace
160 lines
6.8 KiB
C++
160 lines
6.8 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include "main.h"
|
|
|
|
template<typename MatrixType> void matrixRedux(const MatrixType& m)
|
|
{
|
|
typedef typename MatrixType::Index Index;
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename MatrixType::RealScalar RealScalar;
|
|
|
|
Index rows = m.rows();
|
|
Index cols = m.cols();
|
|
|
|
MatrixType m1 = MatrixType::Random(rows, cols);
|
|
|
|
// The entries of m1 are uniformly distributed in [0,1], so m1.prod() is very small. This may lead to test
|
|
// failures if we underflow into denormals. Thus, we scale so that entires are close to 1.
|
|
MatrixType m1_for_prod = MatrixType::Ones(rows, cols) + Scalar(0.2) * m1;
|
|
|
|
VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows, cols).sum(), Scalar(1));
|
|
VERIFY_IS_APPROX(MatrixType::Ones(rows, cols).sum(), Scalar(float(rows*cols))); // the float() here to shut up excessive MSVC warning about int->complex conversion being lossy
|
|
Scalar s(0), p(1), minc(internal::real(m1.coeff(0))), maxc(internal::real(m1.coeff(0)));
|
|
for(int j = 0; j < cols; j++)
|
|
for(int i = 0; i < rows; i++)
|
|
{
|
|
s += m1(i,j);
|
|
p *= m1_for_prod(i,j);
|
|
minc = (std::min)(internal::real(minc), internal::real(m1(i,j)));
|
|
maxc = (std::max)(internal::real(maxc), internal::real(m1(i,j)));
|
|
}
|
|
const Scalar mean = s/Scalar(RealScalar(rows*cols));
|
|
|
|
VERIFY_IS_APPROX(m1.sum(), s);
|
|
VERIFY_IS_APPROX(m1.mean(), mean);
|
|
VERIFY_IS_APPROX(m1_for_prod.prod(), p);
|
|
VERIFY_IS_APPROX(m1.real().minCoeff(), internal::real(minc));
|
|
VERIFY_IS_APPROX(m1.real().maxCoeff(), internal::real(maxc));
|
|
|
|
// test slice vectorization assuming assign is ok
|
|
Index r0 = internal::random<Index>(0,rows-1);
|
|
Index c0 = internal::random<Index>(0,cols-1);
|
|
Index r1 = internal::random<Index>(r0+1,rows)-r0;
|
|
Index c1 = internal::random<Index>(c0+1,cols)-c0;
|
|
VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).sum(), m1.block(r0,c0,r1,c1).eval().sum());
|
|
VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).mean(), m1.block(r0,c0,r1,c1).eval().mean());
|
|
VERIFY_IS_APPROX(m1_for_prod.block(r0,c0,r1,c1).prod(), m1_for_prod.block(r0,c0,r1,c1).eval().prod());
|
|
VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).real().minCoeff(), m1.block(r0,c0,r1,c1).real().eval().minCoeff());
|
|
VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).real().maxCoeff(), m1.block(r0,c0,r1,c1).real().eval().maxCoeff());
|
|
|
|
// test empty objects
|
|
VERIFY_IS_APPROX(m1.block(r0,c0,0,0).sum(), Scalar(0));
|
|
VERIFY_IS_APPROX(m1.block(r0,c0,0,0).prod(), Scalar(1));
|
|
}
|
|
|
|
template<typename VectorType> void vectorRedux(const VectorType& w)
|
|
{
|
|
using std::abs;
|
|
typedef typename VectorType::Index Index;
|
|
typedef typename VectorType::Scalar Scalar;
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
Index size = w.size();
|
|
|
|
VectorType v = VectorType::Random(size);
|
|
VectorType v_for_prod = VectorType::Ones(size) + Scalar(0.2) * v; // see comment above declaration of m1_for_prod
|
|
|
|
for(int i = 1; i < size; i++)
|
|
{
|
|
Scalar s(0), p(1);
|
|
RealScalar minc(internal::real(v.coeff(0))), maxc(internal::real(v.coeff(0)));
|
|
for(int j = 0; j < i; j++)
|
|
{
|
|
s += v[j];
|
|
p *= v_for_prod[j];
|
|
minc = (std::min)(minc, internal::real(v[j]));
|
|
maxc = (std::max)(maxc, internal::real(v[j]));
|
|
}
|
|
VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.head(i).sum()), Scalar(1));
|
|
VERIFY_IS_APPROX(p, v_for_prod.head(i).prod());
|
|
VERIFY_IS_APPROX(minc, v.real().head(i).minCoeff());
|
|
VERIFY_IS_APPROX(maxc, v.real().head(i).maxCoeff());
|
|
}
|
|
|
|
for(int i = 0; i < size-1; i++)
|
|
{
|
|
Scalar s(0), p(1);
|
|
RealScalar minc(internal::real(v.coeff(i))), maxc(internal::real(v.coeff(i)));
|
|
for(int j = i; j < size; j++)
|
|
{
|
|
s += v[j];
|
|
p *= v_for_prod[j];
|
|
minc = (std::min)(minc, internal::real(v[j]));
|
|
maxc = (std::max)(maxc, internal::real(v[j]));
|
|
}
|
|
VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.tail(size-i).sum()), Scalar(1));
|
|
VERIFY_IS_APPROX(p, v_for_prod.tail(size-i).prod());
|
|
VERIFY_IS_APPROX(minc, v.real().tail(size-i).minCoeff());
|
|
VERIFY_IS_APPROX(maxc, v.real().tail(size-i).maxCoeff());
|
|
}
|
|
|
|
for(int i = 0; i < size/2; i++)
|
|
{
|
|
Scalar s(0), p(1);
|
|
RealScalar minc(internal::real(v.coeff(i))), maxc(internal::real(v.coeff(i)));
|
|
for(int j = i; j < size-i; j++)
|
|
{
|
|
s += v[j];
|
|
p *= v_for_prod[j];
|
|
minc = (std::min)(minc, internal::real(v[j]));
|
|
maxc = (std::max)(maxc, internal::real(v[j]));
|
|
}
|
|
VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.segment(i, size-2*i).sum()), Scalar(1));
|
|
VERIFY_IS_APPROX(p, v_for_prod.segment(i, size-2*i).prod());
|
|
VERIFY_IS_APPROX(minc, v.real().segment(i, size-2*i).minCoeff());
|
|
VERIFY_IS_APPROX(maxc, v.real().segment(i, size-2*i).maxCoeff());
|
|
}
|
|
|
|
// test empty objects
|
|
VERIFY_IS_APPROX(v.head(0).sum(), Scalar(0));
|
|
VERIFY_IS_APPROX(v.tail(0).prod(), Scalar(1));
|
|
VERIFY_RAISES_ASSERT(v.head(0).mean());
|
|
VERIFY_RAISES_ASSERT(v.head(0).minCoeff());
|
|
VERIFY_RAISES_ASSERT(v.head(0).maxCoeff());
|
|
}
|
|
|
|
void test_redux()
|
|
{
|
|
// the max size cannot be too large, otherwise reduxion operations obviously generate large errors.
|
|
int maxsize = (std::min)(100,EIGEN_TEST_MAX_SIZE);
|
|
EIGEN_UNUSED_VARIABLE(maxsize);
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1( matrixRedux(Matrix<float, 1, 1>()) );
|
|
CALL_SUBTEST_1( matrixRedux(Array<float, 1, 1>()) );
|
|
CALL_SUBTEST_2( matrixRedux(Matrix2f()) );
|
|
CALL_SUBTEST_2( matrixRedux(Array2f()) );
|
|
CALL_SUBTEST_3( matrixRedux(Matrix4d()) );
|
|
CALL_SUBTEST_3( matrixRedux(Array4d()) );
|
|
CALL_SUBTEST_4( matrixRedux(MatrixXcf(internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) );
|
|
CALL_SUBTEST_4( matrixRedux(ArrayXXcf(internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) );
|
|
CALL_SUBTEST_5( matrixRedux(MatrixXd (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) );
|
|
CALL_SUBTEST_5( matrixRedux(ArrayXXd (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) );
|
|
CALL_SUBTEST_6( matrixRedux(MatrixXi (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) );
|
|
CALL_SUBTEST_6( matrixRedux(ArrayXXi (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) );
|
|
}
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_7( vectorRedux(Vector4f()) );
|
|
CALL_SUBTEST_7( vectorRedux(Array4f()) );
|
|
CALL_SUBTEST_5( vectorRedux(VectorXd(internal::random<int>(1,maxsize))) );
|
|
CALL_SUBTEST_5( vectorRedux(ArrayXd(internal::random<int>(1,maxsize))) );
|
|
CALL_SUBTEST_8( vectorRedux(VectorXf(internal::random<int>(1,maxsize))) );
|
|
CALL_SUBTEST_8( vectorRedux(ArrayXf(internal::random<int>(1,maxsize))) );
|
|
}
|
|
}
|