mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-12 14:25:16 +08:00
64 lines
2.3 KiB
C++
64 lines
2.3 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra. Eigen itself is part of the KDE project.
|
|
//
|
|
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
|
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
// this hack is needed to make this file compiles with -pedantic (gcc)
|
|
#ifdef __GNUC__
|
|
#define throw(X)
|
|
#endif
|
|
// discard stack allocation as that too bypasses malloc
|
|
#define EIGEN_STACK_ALLOCATION_LIMIT 0
|
|
// any heap allocation will raise an assert
|
|
#define EIGEN_NO_MALLOC
|
|
|
|
#include "main.h"
|
|
|
|
template<typename MatrixType> void nomalloc(const MatrixType& m)
|
|
{
|
|
/* this test check no dynamic memory allocation are issued with fixed-size matrices
|
|
*/
|
|
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
|
|
|
int rows = m.rows();
|
|
int cols = m.cols();
|
|
|
|
MatrixType m1 = MatrixType::Random(rows, cols),
|
|
m2 = MatrixType::Random(rows, cols),
|
|
m3(rows, cols),
|
|
mzero = MatrixType::Zero(rows, cols),
|
|
identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
|
|
::Identity(rows, rows),
|
|
square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
|
|
::Random(rows, rows);
|
|
VectorType v1 = VectorType::Random(rows),
|
|
v2 = VectorType::Random(rows),
|
|
vzero = VectorType::Zero(rows);
|
|
|
|
Scalar s1 = ei_random<Scalar>();
|
|
|
|
int r = ei_random<int>(0, rows-1),
|
|
c = ei_random<int>(0, cols-1);
|
|
|
|
VERIFY_IS_APPROX((m1+m2)*s1, s1*m1+s1*m2);
|
|
VERIFY_IS_APPROX((m1+m2)(r,c), (m1(r,c))+(m2(r,c)));
|
|
VERIFY_IS_APPROX(m1.cwise() * m1.block(0,0,rows,cols), m1.cwise() * m1);
|
|
VERIFY_IS_APPROX((m1*m1.transpose())*m2, m1*(m1.transpose()*m2));
|
|
}
|
|
|
|
void test_eigen2_nomalloc()
|
|
{
|
|
// check that our operator new is indeed called:
|
|
VERIFY_RAISES_ASSERT(MatrixXd dummy = MatrixXd::Random(3,3));
|
|
CALL_SUBTEST_1( nomalloc(Matrix<float, 1, 1>()) );
|
|
CALL_SUBTEST_2( nomalloc(Matrix4d()) );
|
|
CALL_SUBTEST_3( nomalloc(Matrix<float,32,32>()) );
|
|
}
|