mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-24 14:45:14 +08:00
116 lines
4.8 KiB
C++
116 lines
4.8 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra. Eigen itself is part of the KDE project.
|
|
//
|
|
// Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include "sparse.h"
|
|
|
|
template<typename SparseMatrixType> void sparse_product(const SparseMatrixType& ref)
|
|
{
|
|
const int rows = ref.rows();
|
|
const int cols = ref.cols();
|
|
typedef typename SparseMatrixType::Scalar Scalar;
|
|
enum { Flags = SparseMatrixType::Flags };
|
|
|
|
double density = std::max(8./(rows*cols), 0.01);
|
|
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
|
|
typedef Matrix<Scalar,Dynamic,1> DenseVector;
|
|
|
|
// test matrix-matrix product
|
|
{
|
|
DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
|
|
DenseMatrix refMat3 = DenseMatrix::Zero(rows, rows);
|
|
DenseMatrix refMat4 = DenseMatrix::Zero(rows, rows);
|
|
DenseMatrix dm4 = DenseMatrix::Zero(rows, rows);
|
|
SparseMatrixType m2(rows, rows);
|
|
SparseMatrixType m3(rows, rows);
|
|
SparseMatrixType m4(rows, rows);
|
|
initSparse<Scalar>(density, refMat2, m2);
|
|
initSparse<Scalar>(density, refMat3, m3);
|
|
initSparse<Scalar>(density, refMat4, m4);
|
|
VERIFY_IS_APPROX(m4=m2*m3, refMat4=refMat2*refMat3);
|
|
VERIFY_IS_APPROX(m4=m2.transpose()*m3, refMat4=refMat2.transpose()*refMat3);
|
|
VERIFY_IS_APPROX(m4=m2.transpose()*m3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose());
|
|
VERIFY_IS_APPROX(m4=m2*m3.transpose(), refMat4=refMat2*refMat3.transpose());
|
|
|
|
// sparse * dense
|
|
VERIFY_IS_APPROX(dm4=m2*refMat3, refMat4=refMat2*refMat3);
|
|
VERIFY_IS_APPROX(dm4=m2*refMat3.transpose(), refMat4=refMat2*refMat3.transpose());
|
|
VERIFY_IS_APPROX(dm4=m2.transpose()*refMat3, refMat4=refMat2.transpose()*refMat3);
|
|
VERIFY_IS_APPROX(dm4=m2.transpose()*refMat3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose());
|
|
|
|
// dense * sparse
|
|
VERIFY_IS_APPROX(dm4=refMat2*m3, refMat4=refMat2*refMat3);
|
|
VERIFY_IS_APPROX(dm4=refMat2*m3.transpose(), refMat4=refMat2*refMat3.transpose());
|
|
VERIFY_IS_APPROX(dm4=refMat2.transpose()*m3, refMat4=refMat2.transpose()*refMat3);
|
|
VERIFY_IS_APPROX(dm4=refMat2.transpose()*m3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose());
|
|
|
|
VERIFY_IS_APPROX(m3=m3*m3, refMat3=refMat3*refMat3);
|
|
}
|
|
|
|
// test matrix - diagonal product
|
|
if(false) // it compiles, but the precision is terrible. probably doesn't matter in this branch....
|
|
{
|
|
DenseMatrix refM2 = DenseMatrix::Zero(rows, rows);
|
|
DenseMatrix refM3 = DenseMatrix::Zero(rows, rows);
|
|
DiagonalMatrix<DenseVector> d1(DenseVector::Random(rows));
|
|
SparseMatrixType m2(rows, rows);
|
|
SparseMatrixType m3(rows, rows);
|
|
initSparse<Scalar>(density, refM2, m2);
|
|
initSparse<Scalar>(density, refM3, m3);
|
|
VERIFY_IS_APPROX(m3=m2*d1, refM3=refM2*d1);
|
|
VERIFY_IS_APPROX(m3=m2.transpose()*d1, refM3=refM2.transpose()*d1);
|
|
VERIFY_IS_APPROX(m3=d1*m2, refM3=d1*refM2);
|
|
VERIFY_IS_APPROX(m3=d1*m2.transpose(), refM3=d1 * refM2.transpose());
|
|
}
|
|
|
|
// test self adjoint products
|
|
{
|
|
DenseMatrix b = DenseMatrix::Random(rows, rows);
|
|
DenseMatrix x = DenseMatrix::Random(rows, rows);
|
|
DenseMatrix refX = DenseMatrix::Random(rows, rows);
|
|
DenseMatrix refUp = DenseMatrix::Zero(rows, rows);
|
|
DenseMatrix refLo = DenseMatrix::Zero(rows, rows);
|
|
DenseMatrix refS = DenseMatrix::Zero(rows, rows);
|
|
SparseMatrixType mUp(rows, rows);
|
|
SparseMatrixType mLo(rows, rows);
|
|
SparseMatrixType mS(rows, rows);
|
|
do {
|
|
initSparse<Scalar>(density, refUp, mUp, ForceRealDiag|/*ForceNonZeroDiag|*/MakeUpperTriangular);
|
|
} while (refUp.isZero());
|
|
refLo = refUp.transpose().conjugate();
|
|
mLo = mUp.transpose().conjugate();
|
|
refS = refUp + refLo;
|
|
refS.diagonal() *= 0.5;
|
|
mS = mUp + mLo;
|
|
for (int k=0; k<mS.outerSize(); ++k)
|
|
for (typename SparseMatrixType::InnerIterator it(mS,k); it; ++it)
|
|
if (it.index() == k)
|
|
it.valueRef() *= 0.5;
|
|
|
|
VERIFY_IS_APPROX(refS.adjoint(), refS);
|
|
VERIFY_IS_APPROX(mS.transpose().conjugate(), mS);
|
|
VERIFY_IS_APPROX(mS, refS);
|
|
VERIFY_IS_APPROX(x=mS*b, refX=refS*b);
|
|
VERIFY_IS_APPROX(x=mUp.template marked<UpperTriangular|SelfAdjoint>()*b, refX=refS*b);
|
|
VERIFY_IS_APPROX(x=mLo.template marked<LowerTriangular|SelfAdjoint>()*b, refX=refS*b);
|
|
VERIFY_IS_APPROX(x=mS.template marked<SelfAdjoint>()*b, refX=refS*b);
|
|
}
|
|
|
|
}
|
|
|
|
void test_eigen2_sparse_product()
|
|
{
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1( sparse_product(SparseMatrix<double>(8, 8)) );
|
|
CALL_SUBTEST_2( sparse_product(SparseMatrix<std::complex<double> >(16, 16)) );
|
|
CALL_SUBTEST_1( sparse_product(SparseMatrix<double>(33, 33)) );
|
|
|
|
CALL_SUBTEST_3( sparse_product(DynamicSparseMatrix<double>(8, 8)) );
|
|
}
|
|
}
|