mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-27 07:29:52 +08:00
63 lines
1.9 KiB
C++
63 lines
1.9 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra. Eigen itself is part of the KDE project.
|
|
//
|
|
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
|
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include "main.h"
|
|
#include <Eigen/LU>
|
|
|
|
template<typename MatrixType> void inverse(const MatrixType& m)
|
|
{
|
|
/* this test covers the following files:
|
|
Inverse.h
|
|
*/
|
|
int rows = m.rows();
|
|
int cols = m.cols();
|
|
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
|
|
|
|
MatrixType m1 = MatrixType::Random(rows, cols),
|
|
m2(rows, cols),
|
|
identity = MatrixType::Identity(rows, rows);
|
|
|
|
while(ei_abs(m1.determinant()) < RealScalar(0.1) && rows <= 8)
|
|
{
|
|
m1 = MatrixType::Random(rows, cols);
|
|
}
|
|
|
|
m2 = m1.inverse();
|
|
VERIFY_IS_APPROX(m1, m2.inverse() );
|
|
|
|
m1.computeInverse(&m2);
|
|
VERIFY_IS_APPROX(m1, m2.inverse() );
|
|
|
|
VERIFY_IS_APPROX((Scalar(2)*m2).inverse(), m2.inverse()*Scalar(0.5));
|
|
|
|
VERIFY_IS_APPROX(identity, m1.inverse() * m1 );
|
|
VERIFY_IS_APPROX(identity, m1 * m1.inverse() );
|
|
|
|
VERIFY_IS_APPROX(m1, m1.inverse().inverse() );
|
|
|
|
// since for the general case we implement separately row-major and col-major, test that
|
|
VERIFY_IS_APPROX(m1.transpose().inverse(), m1.inverse().transpose());
|
|
}
|
|
|
|
void test_eigen2_inverse()
|
|
{
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1( inverse(Matrix<double,1,1>()) );
|
|
CALL_SUBTEST_2( inverse(Matrix2d()) );
|
|
CALL_SUBTEST_3( inverse(Matrix3f()) );
|
|
CALL_SUBTEST_4( inverse(Matrix4f()) );
|
|
CALL_SUBTEST_5( inverse(MatrixXf(8,8)) );
|
|
CALL_SUBTEST_6( inverse(MatrixXcd(7,7)) );
|
|
}
|
|
}
|