eigen/test/packetmath.cpp
2018-12-23 15:40:52 +01:00

779 lines
28 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include "unsupported/Eigen/SpecialFunctions"
#include <typeinfo>
#if defined __GNUC__ && __GNUC__>=6
#pragma GCC diagnostic ignored "-Wignored-attributes"
#endif
// using namespace Eigen;
#ifdef EIGEN_VECTORIZE_SSE
const bool g_vectorize_sse = true;
#else
const bool g_vectorize_sse = false;
#endif
bool g_first_pass = true;
namespace Eigen {
namespace internal {
template<typename T> T negate(const T& x) { return -x; }
template<typename T>
Map<const Array<unsigned char,sizeof(T),1> >
bits(const T& x) {
return Map<const Array<unsigned char,sizeof(T),1> >(reinterpret_cast<const unsigned char *>(&x));
}
// The following implement bitwise operations on floating point types
template<typename T,typename Bits,typename Func>
T apply_bit_op(Bits a, Bits b, Func f) {
Array<unsigned char,sizeof(T),1> res;
for(Index i=0; i<res.size();++i) res[i] = f(a[i],b[i]);
return *reinterpret_cast<T*>(&res);
}
#define EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,T) \
template<> T EIGEN_CAT(p,OP)(const T& a,const T& b) { \
return apply_bit_op<T>(bits(a),bits(b),FUNC); \
}
#define EIGEN_TEST_MAKE_BITWISE(OP,FUNC) \
EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,float) \
EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,double) \
EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,half) \
EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,std::complex<float>) \
EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,std::complex<double>)
EIGEN_TEST_MAKE_BITWISE(xor,std::bit_xor<unsigned char>())
EIGEN_TEST_MAKE_BITWISE(and,std::bit_and<unsigned char>())
EIGEN_TEST_MAKE_BITWISE(or, std::bit_or<unsigned char>())
struct bit_andnot{
template<typename T> T
operator()(T a, T b) const { return a & (~b); }
};
EIGEN_TEST_MAKE_BITWISE(andnot, bit_andnot())
template<typename T>
bool biteq(T a, T b) {
return (bits(a) == bits(b)).all();
}
}
}
// NOTE: we disable inlining for this function to workaround a GCC issue when using -O3 and the i387 FPU.
template<typename Scalar> EIGEN_DONT_INLINE
bool isApproxAbs(const Scalar& a, const Scalar& b, const typename NumTraits<Scalar>::Real& refvalue)
{
return internal::isMuchSmallerThan(a-b, refvalue);
}
template<typename Scalar> bool areApproxAbs(const Scalar* a, const Scalar* b, int size, const typename NumTraits<Scalar>::Real& refvalue)
{
for (int i=0; i<size; ++i)
{
if (!isApproxAbs(a[i],b[i],refvalue))
{
std::cout << "ref: [" << Map<const Matrix<Scalar,1,Dynamic> >(a,size) << "]" << " != vec: [" << Map<const Matrix<Scalar,1,Dynamic> >(b,size) << "]\n";
return false;
}
}
return true;
}
template<typename Scalar> bool areApprox(const Scalar* a, const Scalar* b, int size)
{
for (int i=0; i<size; ++i)
{
if ((!internal::biteq(a[i],b[i])) && a[i]!=b[i] && !internal::isApprox(a[i],b[i]))
{
std::cout << "ref: [" << Map<const Matrix<Scalar,1,Dynamic> >(a,size) << "]" << " != vec: [" << Map<const Matrix<Scalar,1,Dynamic> >(b,size) << "]\n";
return false;
}
}
return true;
}
#define CHECK_CWISE1(REFOP, POP) { \
for (int i=0; i<PacketSize; ++i) \
ref[i] = REFOP(data1[i]); \
internal::pstore(data2, POP(internal::pload<Packet>(data1))); \
VERIFY(areApprox(ref, data2, PacketSize) && #POP); \
}
template<bool Cond,typename Packet>
struct packet_helper
{
template<typename T>
inline Packet load(const T* from) const { return internal::pload<Packet>(from); }
template<typename T>
inline void store(T* to, const Packet& x) const { internal::pstore(to,x); }
};
template<typename Packet>
struct packet_helper<false,Packet>
{
template<typename T>
inline T load(const T* from) const { return *from; }
template<typename T>
inline void store(T* to, const T& x) const { *to = x; }
};
#define CHECK_CWISE1_IF(COND, REFOP, POP) if(COND) { \
packet_helper<COND,Packet> h; \
for (int i=0; i<PacketSize; ++i) \
ref[i] = REFOP(data1[i]); \
h.store(data2, POP(h.load(data1))); \
VERIFY(areApprox(ref, data2, PacketSize) && #POP); \
}
#define CHECK_CWISE2_IF(COND, REFOP, POP) if(COND) { \
packet_helper<COND,Packet> h; \
for (int i=0; i<PacketSize; ++i) \
ref[i] = REFOP(data1[i], data1[i+PacketSize]); \
h.store(data2, POP(h.load(data1),h.load(data1+PacketSize))); \
VERIFY(areApprox(ref, data2, PacketSize) && #POP); \
}
#define REF_ADD(a,b) ((a)+(b))
#define REF_SUB(a,b) ((a)-(b))
#define REF_MUL(a,b) ((a)*(b))
#define REF_DIV(a,b) ((a)/(b))
template<typename Scalar,typename Packet> void packetmath()
{
using std::abs;
typedef internal::packet_traits<Scalar> PacketTraits;
const int PacketSize = internal::unpacket_traits<Packet>::size;
typedef typename NumTraits<Scalar>::Real RealScalar;
if (g_first_pass)
std::cerr << "=== Testing packet of type '" << typeid(Packet).name()
<< "' and scalar type '" << typeid(Scalar).name()
<< "' and size '" << PacketSize << "' ===\n" ;
const int max_size = PacketSize > 4 ? PacketSize : 4;
const int size = PacketSize*max_size;
EIGEN_ALIGN_MAX Scalar data1[size];
EIGEN_ALIGN_MAX Scalar data2[size];
EIGEN_ALIGN_MAX Packet packets[PacketSize*2];
EIGEN_ALIGN_MAX Scalar ref[size];
RealScalar refvalue = RealScalar(0);
for (int i=0; i<size; ++i)
{
data1[i] = internal::random<Scalar>()/RealScalar(PacketSize);
data2[i] = internal::random<Scalar>()/RealScalar(PacketSize);
refvalue = (std::max)(refvalue,abs(data1[i]));
}
internal::pstore(data2, internal::pload<Packet>(data1));
VERIFY(areApprox(data1, data2, PacketSize) && "aligned load/store");
for (int offset=0; offset<PacketSize; ++offset)
{
internal::pstore(data2, internal::ploadu<Packet>(data1+offset));
VERIFY(areApprox(data1+offset, data2, PacketSize) && "internal::ploadu");
}
for (int offset=0; offset<PacketSize; ++offset)
{
internal::pstoreu(data2+offset, internal::pload<Packet>(data1));
VERIFY(areApprox(data1, data2+offset, PacketSize) && "internal::pstoreu");
}
for (int offset=0; offset<PacketSize; ++offset)
{
#define MIN(A,B) (A<B?A:B)
packets[0] = internal::pload<Packet>(data1);
packets[1] = internal::pload<Packet>(data1+PacketSize);
if (offset==0) internal::palign<0>(packets[0], packets[1]);
else if (offset==1) internal::palign<MIN(1,PacketSize-1)>(packets[0], packets[1]);
else if (offset==2) internal::palign<MIN(2,PacketSize-1)>(packets[0], packets[1]);
else if (offset==3) internal::palign<MIN(3,PacketSize-1)>(packets[0], packets[1]);
else if (offset==4) internal::palign<MIN(4,PacketSize-1)>(packets[0], packets[1]);
else if (offset==5) internal::palign<MIN(5,PacketSize-1)>(packets[0], packets[1]);
else if (offset==6) internal::palign<MIN(6,PacketSize-1)>(packets[0], packets[1]);
else if (offset==7) internal::palign<MIN(7,PacketSize-1)>(packets[0], packets[1]);
else if (offset==8) internal::palign<MIN(8,PacketSize-1)>(packets[0], packets[1]);
else if (offset==9) internal::palign<MIN(9,PacketSize-1)>(packets[0], packets[1]);
else if (offset==10) internal::palign<MIN(10,PacketSize-1)>(packets[0], packets[1]);
else if (offset==11) internal::palign<MIN(11,PacketSize-1)>(packets[0], packets[1]);
else if (offset==12) internal::palign<MIN(12,PacketSize-1)>(packets[0], packets[1]);
else if (offset==13) internal::palign<MIN(13,PacketSize-1)>(packets[0], packets[1]);
else if (offset==14) internal::palign<MIN(14,PacketSize-1)>(packets[0], packets[1]);
else if (offset==15) internal::palign<MIN(15,PacketSize-1)>(packets[0], packets[1]);
internal::pstore(data2, packets[0]);
for (int i=0; i<PacketSize; ++i)
ref[i] = data1[i+offset];
// palign is not used anymore, so let's just put a warning if it fails
++g_test_level;
VERIFY(areApprox(ref, data2, PacketSize) && "internal::palign");
--g_test_level;
}
VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasAdd);
VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasSub);
VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasMul);
VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasNegate);
// Disabled as it is not clear why it would be mandatory to support division.
//VERIFY((internal::is_same<Scalar,int>::value) || (!PacketTraits::Vectorizable) || PacketTraits::HasDiv);
CHECK_CWISE2_IF(PacketTraits::HasAdd, REF_ADD, internal::padd);
CHECK_CWISE2_IF(PacketTraits::HasSub, REF_SUB, internal::psub);
CHECK_CWISE2_IF(PacketTraits::HasMul, REF_MUL, internal::pmul);
CHECK_CWISE2_IF(PacketTraits::HasDiv, REF_DIV, internal::pdiv);
CHECK_CWISE1(internal::negate, internal::pnegate);
CHECK_CWISE1(numext::conj, internal::pconj);
for(int offset=0;offset<3;++offset)
{
for (int i=0; i<PacketSize; ++i)
ref[i] = data1[offset];
internal::pstore(data2, internal::pset1<Packet>(data1[offset]));
VERIFY(areApprox(ref, data2, PacketSize) && "internal::pset1");
}
{
for (int i=0; i<PacketSize*4; ++i)
ref[i] = data1[i/PacketSize];
Packet A0, A1, A2, A3;
internal::pbroadcast4<Packet>(data1, A0, A1, A2, A3);
internal::pstore(data2+0*PacketSize, A0);
internal::pstore(data2+1*PacketSize, A1);
internal::pstore(data2+2*PacketSize, A2);
internal::pstore(data2+3*PacketSize, A3);
VERIFY(areApprox(ref, data2, 4*PacketSize) && "internal::pbroadcast4");
}
{
for (int i=0; i<PacketSize*2; ++i)
ref[i] = data1[i/PacketSize];
Packet A0, A1;
internal::pbroadcast2<Packet>(data1, A0, A1);
internal::pstore(data2+0*PacketSize, A0);
internal::pstore(data2+1*PacketSize, A1);
VERIFY(areApprox(ref, data2, 2*PacketSize) && "internal::pbroadcast2");
}
VERIFY(internal::isApprox(data1[0], internal::pfirst(internal::pload<Packet>(data1))) && "internal::pfirst");
if(PacketSize>1)
{
// apply different offsets to check that ploaddup is robust to unaligned inputs
for(int offset=0;offset<4;++offset)
{
for(int i=0;i<PacketSize/2;++i)
ref[2*i+0] = ref[2*i+1] = data1[offset+i];
internal::pstore(data2,internal::ploaddup<Packet>(data1+offset));
VERIFY(areApprox(ref, data2, PacketSize) && "ploaddup");
}
}
if(PacketSize>2)
{
// apply different offsets to check that ploadquad is robust to unaligned inputs
for(int offset=0;offset<4;++offset)
{
for(int i=0;i<PacketSize/4;++i)
ref[4*i+0] = ref[4*i+1] = ref[4*i+2] = ref[4*i+3] = data1[offset+i];
internal::pstore(data2,internal::ploadquad<Packet>(data1+offset));
VERIFY(areApprox(ref, data2, PacketSize) && "ploadquad");
}
}
ref[0] = Scalar(0);
for (int i=0; i<PacketSize; ++i)
ref[0] += data1[i];
VERIFY(isApproxAbs(ref[0], internal::predux(internal::pload<Packet>(data1)), refvalue) && "internal::predux");
if(PacketSize==8 && internal::unpacket_traits<typename internal::unpacket_traits<Packet>::half>::size ==4) // so far, predux_half_downto4 is only required in such a case
{
int HalfPacketSize = PacketSize>4 ? PacketSize/2 : PacketSize;
for (int i=0; i<HalfPacketSize; ++i)
ref[i] = Scalar(0);
for (int i=0; i<PacketSize; ++i)
ref[i%HalfPacketSize] += data1[i];
internal::pstore(data2, internal::predux_half_dowto4(internal::pload<Packet>(data1)));
VERIFY(areApprox(ref, data2, HalfPacketSize) && "internal::predux_half_dowto4");
}
ref[0] = Scalar(1);
for (int i=0; i<PacketSize; ++i)
ref[0] *= data1[i];
VERIFY(internal::isApprox(ref[0], internal::predux_mul(internal::pload<Packet>(data1))) && "internal::predux_mul");
if (PacketTraits::HasReduxp)
{
for (int j=0; j<PacketSize; ++j)
{
ref[j] = Scalar(0);
for (int i=0; i<PacketSize; ++i)
ref[j] += data1[i+j*PacketSize];
packets[j] = internal::pload<Packet>(data1+j*PacketSize);
}
internal::pstore(data2, internal::preduxp(packets));
VERIFY(areApproxAbs(ref, data2, PacketSize, refvalue) && "internal::preduxp");
}
for (int i=0; i<PacketSize; ++i)
ref[i] = data1[PacketSize-i-1];
internal::pstore(data2, internal::preverse(internal::pload<Packet>(data1)));
VERIFY(areApprox(ref, data2, PacketSize) && "internal::preverse");
internal::PacketBlock<Packet> kernel;
for (int i=0; i<PacketSize; ++i) {
kernel.packet[i] = internal::pload<Packet>(data1+i*PacketSize);
}
ptranspose(kernel);
for (int i=0; i<PacketSize; ++i) {
internal::pstore(data2, kernel.packet[i]);
for (int j = 0; j < PacketSize; ++j) {
VERIFY(isApproxAbs(data2[j], data1[i+j*PacketSize], refvalue) && "ptranspose");
}
}
if (PacketTraits::HasBlend) {
Packet thenPacket = internal::pload<Packet>(data1);
Packet elsePacket = internal::pload<Packet>(data2);
EIGEN_ALIGN_MAX internal::Selector<PacketSize> selector;
for (int i = 0; i < PacketSize; ++i) {
selector.select[i] = i;
}
Packet blend = internal::pblend(selector, thenPacket, elsePacket);
EIGEN_ALIGN_MAX Scalar result[size];
internal::pstore(result, blend);
for (int i = 0; i < PacketSize; ++i) {
VERIFY(isApproxAbs(result[i], (selector.select[i] ? data1[i] : data2[i]), refvalue));
}
}
if (PacketTraits::HasBlend || g_vectorize_sse) {
// pinsertfirst
for (int i=0; i<PacketSize; ++i)
ref[i] = data1[i];
Scalar s = internal::random<Scalar>();
ref[0] = s;
internal::pstore(data2, internal::pinsertfirst(internal::pload<Packet>(data1),s));
VERIFY(areApprox(ref, data2, PacketSize) && "internal::pinsertfirst");
}
if (PacketTraits::HasBlend || g_vectorize_sse) {
// pinsertlast
for (int i=0; i<PacketSize; ++i)
ref[i] = data1[i];
Scalar s = internal::random<Scalar>();
ref[PacketSize-1] = s;
internal::pstore(data2, internal::pinsertlast(internal::pload<Packet>(data1),s));
VERIFY(areApprox(ref, data2, PacketSize) && "internal::pinsertlast");
}
{
for (int i=0; i<PacketSize; ++i)
{
data1[i] = internal::random<Scalar>();
unsigned char v = internal::random<bool>() ? 0xff : 0;
char* bytes = (char*)(data1+PacketSize+i);
for(int k=0; k<int(sizeof(Scalar)); ++k)
bytes[k] = v;
}
CHECK_CWISE2_IF(true, internal::por, internal::por);
CHECK_CWISE2_IF(true, internal::pxor, internal::pxor);
CHECK_CWISE2_IF(true, internal::pand, internal::pand);
CHECK_CWISE2_IF(true, internal::pandnot, internal::pandnot);
}
}
template<typename Scalar,typename Packet> void packetmath_real()
{
using std::abs;
typedef internal::packet_traits<Scalar> PacketTraits;
const int PacketSize = internal::unpacket_traits<Packet>::size;
const int size = PacketSize*4;
EIGEN_ALIGN_MAX Scalar data1[PacketSize*4];
EIGEN_ALIGN_MAX Scalar data2[PacketSize*4];
EIGEN_ALIGN_MAX Scalar ref[PacketSize*4];
for (int i=0; i<size; ++i)
{
data1[i] = internal::random<Scalar>(-1,1) * std::pow(Scalar(10), internal::random<Scalar>(-3,3));
data2[i] = internal::random<Scalar>(-1,1) * std::pow(Scalar(10), internal::random<Scalar>(-3,3));
}
CHECK_CWISE1_IF(PacketTraits::HasSin, std::sin, internal::psin);
CHECK_CWISE1_IF(PacketTraits::HasCos, std::cos, internal::pcos);
CHECK_CWISE1_IF(PacketTraits::HasTan, std::tan, internal::ptan);
CHECK_CWISE1_IF(PacketTraits::HasRound, numext::round, internal::pround);
CHECK_CWISE1_IF(PacketTraits::HasCeil, numext::ceil, internal::pceil);
CHECK_CWISE1_IF(PacketTraits::HasFloor, numext::floor, internal::pfloor);
for (int i=0; i<size; ++i)
{
data1[i] = internal::random<Scalar>(-1,1);
data2[i] = internal::random<Scalar>(-1,1);
}
CHECK_CWISE1_IF(PacketTraits::HasASin, std::asin, internal::pasin);
CHECK_CWISE1_IF(PacketTraits::HasACos, std::acos, internal::pacos);
for (int i=0; i<size; ++i)
{
data1[i] = internal::random<Scalar>(-87,88);
data2[i] = internal::random<Scalar>(-87,88);
}
CHECK_CWISE1_IF(PacketTraits::HasExp, std::exp, internal::pexp);
for (int i=0; i<size; ++i)
{
data1[i] = internal::random<Scalar>(-1,1) * std::pow(Scalar(10), internal::random<Scalar>(-6,6));
data2[i] = internal::random<Scalar>(-1,1) * std::pow(Scalar(10), internal::random<Scalar>(-6,6));
}
CHECK_CWISE1_IF(PacketTraits::HasTanh, std::tanh, internal::ptanh);
if(PacketTraits::HasExp && PacketSize>=2)
{
data1[0] = std::numeric_limits<Scalar>::quiet_NaN();
data1[1] = std::numeric_limits<Scalar>::epsilon();
packet_helper<PacketTraits::HasExp,Packet> h;
h.store(data2, internal::pexp(h.load(data1)));
VERIFY((numext::isnan)(data2[0]));
VERIFY_IS_EQUAL(std::exp(std::numeric_limits<Scalar>::epsilon()), data2[1]);
data1[0] = -std::numeric_limits<Scalar>::epsilon();
data1[1] = 0;
h.store(data2, internal::pexp(h.load(data1)));
VERIFY_IS_EQUAL(std::exp(-std::numeric_limits<Scalar>::epsilon()), data2[0]);
VERIFY_IS_EQUAL(std::exp(Scalar(0)), data2[1]);
data1[0] = (std::numeric_limits<Scalar>::min)();
data1[1] = -(std::numeric_limits<Scalar>::min)();
h.store(data2, internal::pexp(h.load(data1)));
VERIFY_IS_EQUAL(std::exp((std::numeric_limits<Scalar>::min)()), data2[0]);
VERIFY_IS_EQUAL(std::exp(-(std::numeric_limits<Scalar>::min)()), data2[1]);
data1[0] = std::numeric_limits<Scalar>::denorm_min();
data1[1] = -std::numeric_limits<Scalar>::denorm_min();
h.store(data2, internal::pexp(h.load(data1)));
VERIFY_IS_EQUAL(std::exp(std::numeric_limits<Scalar>::denorm_min()), data2[0]);
VERIFY_IS_EQUAL(std::exp(-std::numeric_limits<Scalar>::denorm_min()), data2[1]);
}
if (PacketTraits::HasTanh) {
// NOTE this test migh fail with GCC prior to 6.3, see MathFunctionsImpl.h for details.
data1[0] = std::numeric_limits<Scalar>::quiet_NaN();
packet_helper<internal::packet_traits<Scalar>::HasTanh,Packet> h;
h.store(data2, internal::ptanh(h.load(data1)));
VERIFY((numext::isnan)(data2[0]));
}
#if EIGEN_HAS_C99_MATH
{
data1[0] = std::numeric_limits<Scalar>::quiet_NaN();
packet_helper<internal::packet_traits<Scalar>::HasLGamma,Packet> h;
h.store(data2, internal::plgamma(h.load(data1)));
VERIFY((numext::isnan)(data2[0]));
}
{
data1[0] = std::numeric_limits<Scalar>::quiet_NaN();
packet_helper<internal::packet_traits<Scalar>::HasErf,Packet> h;
h.store(data2, internal::perf(h.load(data1)));
VERIFY((numext::isnan)(data2[0]));
}
{
data1[0] = std::numeric_limits<Scalar>::quiet_NaN();
packet_helper<internal::packet_traits<Scalar>::HasErfc,Packet> h;
h.store(data2, internal::perfc(h.load(data1)));
VERIFY((numext::isnan)(data2[0]));
}
#endif // EIGEN_HAS_C99_MATH
for (int i=0; i<size; ++i)
{
data1[i] = internal::random<Scalar>(0,1) * std::pow(Scalar(10), internal::random<Scalar>(-6,6));
data2[i] = internal::random<Scalar>(0,1) * std::pow(Scalar(10), internal::random<Scalar>(-6,6));
}
if(internal::random<float>(0,1)<0.1f)
data1[internal::random<int>(0, PacketSize)] = 0;
CHECK_CWISE1_IF(PacketTraits::HasSqrt, std::sqrt, internal::psqrt);
CHECK_CWISE1_IF(PacketTraits::HasSqrt, Scalar(1)/std::sqrt, internal::prsqrt);
CHECK_CWISE1_IF(PacketTraits::HasLog, std::log, internal::plog);
#if EIGEN_HAS_C99_MATH && (__cplusplus > 199711L)
CHECK_CWISE1_IF(PacketTraits::HasExpm1, std::expm1, internal::pexpm1);
CHECK_CWISE1_IF(PacketTraits::HasLog1p, std::log1p, internal::plog1p);
CHECK_CWISE1_IF(internal::packet_traits<Scalar>::HasLGamma, std::lgamma, internal::plgamma);
CHECK_CWISE1_IF(internal::packet_traits<Scalar>::HasErf, std::erf, internal::perf);
CHECK_CWISE1_IF(internal::packet_traits<Scalar>::HasErfc, std::erfc, internal::perfc);
#endif
if(PacketSize>=2)
{
data1[0] = std::numeric_limits<Scalar>::quiet_NaN();
data1[1] = std::numeric_limits<Scalar>::epsilon();
if(PacketTraits::HasLog)
{
packet_helper<PacketTraits::HasLog,Packet> h;
h.store(data2, internal::plog(h.load(data1)));
VERIFY((numext::isnan)(data2[0]));
VERIFY_IS_EQUAL(std::log(std::numeric_limits<Scalar>::epsilon()), data2[1]);
data1[0] = -std::numeric_limits<Scalar>::epsilon();
data1[1] = 0;
h.store(data2, internal::plog(h.load(data1)));
VERIFY((numext::isnan)(data2[0]));
VERIFY_IS_EQUAL(std::log(Scalar(0)), data2[1]);
data1[0] = (std::numeric_limits<Scalar>::min)();
data1[1] = -(std::numeric_limits<Scalar>::min)();
h.store(data2, internal::plog(h.load(data1)));
VERIFY_IS_EQUAL(std::log((std::numeric_limits<Scalar>::min)()), data2[0]);
VERIFY((numext::isnan)(data2[1]));
data1[0] = std::numeric_limits<Scalar>::denorm_min();
data1[1] = -std::numeric_limits<Scalar>::denorm_min();
h.store(data2, internal::plog(h.load(data1)));
// VERIFY_IS_EQUAL(std::log(std::numeric_limits<Scalar>::denorm_min()), data2[0]);
VERIFY((numext::isnan)(data2[1]));
data1[0] = Scalar(-1.0f);
h.store(data2, internal::plog(h.load(data1)));
VERIFY((numext::isnan)(data2[0]));
data1[0] = std::numeric_limits<Scalar>::infinity();
h.store(data2, internal::plog(h.load(data1)));
VERIFY((numext::isinf)(data2[0]));
}
{
packet_helper<PacketTraits::HasSqrt,Packet> h;
data1[0] = Scalar(-1.0f);
h.store(data2, internal::psqrt(h.load(data1)));
VERIFY((numext::isnan)(data2[0]));
VERIFY((numext::isnan)(data2[1]));
}
}
}
template<typename Scalar,typename Packet> void packetmath_notcomplex()
{
using std::abs;
typedef internal::packet_traits<Scalar> PacketTraits;
const int PacketSize = internal::unpacket_traits<Packet>::size;
EIGEN_ALIGN_MAX Scalar data1[PacketSize*4];
EIGEN_ALIGN_MAX Scalar data2[PacketSize*4];
EIGEN_ALIGN_MAX Scalar ref[PacketSize*4];
Array<Scalar,Dynamic,1>::Map(data1, PacketSize*4).setRandom();
ref[0] = data1[0];
for (int i=0; i<PacketSize; ++i)
ref[0] = (std::min)(ref[0],data1[i]);
VERIFY(internal::isApprox(ref[0], internal::predux_min(internal::pload<Packet>(data1))) && "internal::predux_min");
VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasMin);
VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasMax);
CHECK_CWISE2_IF(PacketTraits::HasMin, (std::min), internal::pmin);
CHECK_CWISE2_IF(PacketTraits::HasMax, (std::max), internal::pmax);
CHECK_CWISE1(abs, internal::pabs);
ref[0] = data1[0];
for (int i=0; i<PacketSize; ++i)
ref[0] = (std::max)(ref[0],data1[i]);
VERIFY(internal::isApprox(ref[0], internal::predux_max(internal::pload<Packet>(data1))) && "internal::predux_max");
for (int i=0; i<PacketSize; ++i)
ref[i] = data1[0]+Scalar(i);
internal::pstore(data2, internal::plset<Packet>(data1[0]));
VERIFY(areApprox(ref, data2, PacketSize) && "internal::plset");
}
template<typename Scalar,typename Packet,bool ConjLhs,bool ConjRhs> void test_conj_helper(Scalar* data1, Scalar* data2, Scalar* ref, Scalar* pval)
{
const int PacketSize = internal::unpacket_traits<Packet>::size;
internal::conj_if<ConjLhs> cj0;
internal::conj_if<ConjRhs> cj1;
internal::conj_helper<Scalar,Scalar,ConjLhs,ConjRhs> cj;
internal::conj_helper<Packet,Packet,ConjLhs,ConjRhs> pcj;
for(int i=0;i<PacketSize;++i)
{
ref[i] = cj0(data1[i]) * cj1(data2[i]);
VERIFY(internal::isApprox(ref[i], cj.pmul(data1[i],data2[i])) && "conj_helper pmul");
}
internal::pstore(pval,pcj.pmul(internal::pload<Packet>(data1),internal::pload<Packet>(data2)));
VERIFY(areApprox(ref, pval, PacketSize) && "conj_helper pmul");
for(int i=0;i<PacketSize;++i)
{
Scalar tmp = ref[i];
ref[i] += cj0(data1[i]) * cj1(data2[i]);
VERIFY(internal::isApprox(ref[i], cj.pmadd(data1[i],data2[i],tmp)) && "conj_helper pmadd");
}
internal::pstore(pval,pcj.pmadd(internal::pload<Packet>(data1),internal::pload<Packet>(data2),internal::pload<Packet>(pval)));
VERIFY(areApprox(ref, pval, PacketSize) && "conj_helper pmadd");
}
template<typename Scalar,typename Packet> void packetmath_complex()
{
const int PacketSize = internal::unpacket_traits<Packet>::size;
const int size = PacketSize*4;
EIGEN_ALIGN_MAX Scalar data1[PacketSize*4];
EIGEN_ALIGN_MAX Scalar data2[PacketSize*4];
EIGEN_ALIGN_MAX Scalar ref[PacketSize*4];
EIGEN_ALIGN_MAX Scalar pval[PacketSize*4];
for (int i=0; i<size; ++i)
{
data1[i] = internal::random<Scalar>() * Scalar(1e2);
data2[i] = internal::random<Scalar>() * Scalar(1e2);
}
test_conj_helper<Scalar,Packet,false,false> (data1,data2,ref,pval);
test_conj_helper<Scalar,Packet,false,true> (data1,data2,ref,pval);
test_conj_helper<Scalar,Packet,true,false> (data1,data2,ref,pval);
test_conj_helper<Scalar,Packet,true,true> (data1,data2,ref,pval);
{
for(int i=0;i<PacketSize;++i)
ref[i] = Scalar(std::imag(data1[i]),std::real(data1[i]));
internal::pstore(pval,internal::pcplxflip(internal::pload<Packet>(data1)));
VERIFY(areApprox(ref, pval, PacketSize) && "pcplxflip");
}
}
template<typename Scalar,typename Packet> void packetmath_scatter_gather()
{
typedef typename NumTraits<Scalar>::Real RealScalar;
const int PacketSize = internal::unpacket_traits<Packet>::size;
EIGEN_ALIGN_MAX Scalar data1[PacketSize];
RealScalar refvalue = 0;
for (int i=0; i<PacketSize; ++i) {
data1[i] = internal::random<Scalar>()/RealScalar(PacketSize);
}
int stride = internal::random<int>(1,20);
EIGEN_ALIGN_MAX Scalar buffer[PacketSize*20];
memset(buffer, 0, 20*PacketSize*sizeof(Scalar));
Packet packet = internal::pload<Packet>(data1);
internal::pscatter<Scalar, Packet>(buffer, packet, stride);
for (int i = 0; i < PacketSize*20; ++i) {
if ((i%stride) == 0 && i<stride*PacketSize) {
VERIFY(isApproxAbs(buffer[i], data1[i/stride], refvalue) && "pscatter");
} else {
VERIFY(isApproxAbs(buffer[i], Scalar(0), refvalue) && "pscatter");
}
}
for (int i=0; i<PacketSize*7; ++i) {
buffer[i] = internal::random<Scalar>()/RealScalar(PacketSize);
}
packet = internal::pgather<Scalar, Packet>(buffer, 7);
internal::pstore(data1, packet);
for (int i = 0; i < PacketSize; ++i) {
VERIFY(isApproxAbs(data1[i], buffer[i*7], refvalue) && "pgather");
}
}
template<
typename Scalar,
typename PacketType,
bool IsComplex = NumTraits<Scalar>::IsComplex,
bool IsInteger = NumTraits<Scalar>::IsInteger>
struct runall;
template<typename Scalar,typename PacketType>
struct runall<Scalar,PacketType,false,false> { // i.e. float or double
static void run() {
packetmath<Scalar,PacketType>();
packetmath_scatter_gather<Scalar,PacketType>();
packetmath_notcomplex<Scalar,PacketType>();
packetmath_real<Scalar,PacketType>();
}
};
template<typename Scalar,typename PacketType>
struct runall<Scalar,PacketType,false,true> { // i.e. int
static void run() {
packetmath<Scalar,PacketType>();
packetmath_scatter_gather<Scalar,PacketType>();
packetmath_notcomplex<Scalar,PacketType>();
}
};
template<typename Scalar,typename PacketType>
struct runall<Scalar,PacketType,true,false> { // i.e. complex
static void run() {
packetmath<Scalar,PacketType>();
packetmath_scatter_gather<Scalar,PacketType>();
packetmath_complex<Scalar,PacketType>();
}
};
template<
typename Scalar,
typename PacketType = typename internal::packet_traits<Scalar>::type,
bool Vectorized = internal::packet_traits<Scalar>::Vectorizable,
bool HasHalf = !internal::is_same<typename internal::unpacket_traits<PacketType>::half,PacketType>::value >
struct runner;
template<typename Scalar,typename PacketType>
struct runner<Scalar,PacketType,true,true>
{
static void run() {
runall<Scalar,PacketType>::run();
runner<Scalar,typename internal::unpacket_traits<PacketType>::half>::run();
}
};
template<typename Scalar,typename PacketType>
struct runner<Scalar,PacketType,true,false>
{
static void run() {
runall<Scalar,PacketType>::run();
runall<Scalar,Scalar>::run();
}
};
template<typename Scalar,typename PacketType>
struct runner<Scalar,PacketType,false,false>
{
static void run() {
runall<Scalar,PacketType>::run();
}
};
EIGEN_DECLARE_TEST(packetmath)
{
g_first_pass = true;
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( runner<float>::run() );
CALL_SUBTEST_2( runner<double>::run() );
CALL_SUBTEST_3( runner<int>::run() );
CALL_SUBTEST_4( runner<std::complex<float> >::run() );
CALL_SUBTEST_5( runner<std::complex<double> >::run() );
CALL_SUBTEST_6(( packetmath<half,internal::packet_traits<half>::type>() ));
g_first_pass = false;
}
}